Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T19:43:54.960Z Has data issue: false hasContentIssue false

Investigation of PbMg target characteristics by a laser mass-spectrometer

Published online by Cambridge University Press:  05 December 2005

R.T. KHAYDAROV
Affiliation:
Scientific Research Institute of Applied Physics at the National University of Uzbekistan, Taskent, Usbekistan
G.R. BERDIYOROV
Affiliation:
Scientific Research Institute of Applied Physics at the National University of Uzbekistan, Taskent, Usbekistan
U. KUNISHEV
Affiliation:
Scientific Research Institute of Applied Physics at the National University of Uzbekistan, Taskent, Usbekistan
M. KHALMURATOV
Affiliation:
Scientific Research Institute of Applied Physics at the National University of Uzbekistan, Taskent, Usbekistan
E. TOJIKHONOV
Affiliation:
Scientific Research Institute of Applied Physics at the National University of Uzbekistan, Taskent, Usbekistan
M. KANAPATHIPILLAI
Affiliation:
GSI-Darmstadt, Plasmaphysik, Darmstadt, Germany Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany

Abstract

Characteristics of two-element (PbMg) laser generated plasma ions were studied using a mass-spectrometer. It was found that increasing the fraction of Mg leads to widening of the energy spectra of Pb ions by more than a factor of two, while the intensity of Pb ions of all charge states does not depend on the Mg fraction. This effect is explained by the friction existing between light and heavy ions during their expansion away from the target.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bedilov, M.R., Khaidarov, P.T., Davletov, I.Yu. & Yakubov, B.Kh. (1995). Formation of multiply charged ions at the perpendicular interaction of laser radiation with the surface of aluminum. Plasma Phys. 21, 10071009.Google Scholar
Bedilov, M.R., Sabitov, M.S. & Khalboev, A. (1987). Energy and angular spectra of gas ions in a multi-elements laser plasma. Fiz. Plasmy. 3, 585588.Google Scholar
Bikovskie, Yu.A., Silnov, C.M., Sharkov, B.Yu., Shovosia, G.A. & Shuvalov, C.M. (1977). Laser-produced plasma of two-component targets. Fiz. Plasmy. 3, 11531157.Google Scholar
Breschi, E., Borghesi, M., Campbell, D.H., Galimberti, M., Giulietti, D., Gizzi, L.A., Romagnani, L., Schiavi, A. & Willi, O. (2004). Spectral and angular characterization of laser-produced proton beams from dosimetric measurements. Laser Part. Beams 22, 393397.Google Scholar
Doria, D., Lorusso, A., Belloni, F., Nassisi, V., Torrist, L. & Gammino, S. (2004). A study of the parameters of particles ejected from a laser plasma. Laser Part. Beams 23, 461.Google Scholar
Dubenkov, V., Sharkov, B., Golubev, A., Shumshurov, A., Shamaev, O., Roudskoy, I., Streltsov, A., Satov, Y., Makarov, K., Smakovsky, Y., Hoffmann, D., Laux, W., Muller, R.W., Spadtke, P., Stockl, C., Wolf, B. & Jacoby, J. (1996). Acceleration of Ta10+ ions produced by laser ion source in RFQ MAXILAC. Laser Part. Beams 14, 385392.Google Scholar
Gushenets, V.I., Oks, E.M., Yushkov, G.Y.U. & Rempe, N.G. (2003). Current status of plasma emission electronics: I. Basic physical processes. Laser Part. Beams 21, 123138.Google Scholar
Hasegawa, J., Yoshida, M., Oguri, Y., Ogawa, M., Nakajima, M. & Horioka, K. (2000). High-current laser ion source for induction accelerators. Nucl. Instrum. Meth. Phys. Res. 161, 11041107.Google Scholar
Hora, H. (2004). Development in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439450.Google Scholar
Magunov, A.I., Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Yu. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 512.Google Scholar
Ogawa, M., Yoshida, M., Nakajima, M., Hasegawa, J., Kukata, S., Horioka, K. & Oguri, Y. (2003). High-current laser ion source based on a low-power laser. Laser Part. Beams 21, 633638.Google Scholar
Osman, F., Cang, Y., Hora, H., Cao, L.H., Liu, H., Badziak, J., Parys, A.B., Wolowski, J., Woryna, E., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser Part. Beams 22, 8387.Google Scholar
Rafique, M.S., Rahman, M.K., Anwar, M.S., Mahmood, F., Ashfaq, A. & Siraj, K. (2005). Angular distribution and forward peaking of laser produced plasma ions. Laser Part. Beams 23, 131135.Google Scholar
Rai, V.N., Singh, J.P., Yueh, F.Y. & Cook, R.L. (2003). Study of optical emission from laser-produced plasma expanding across an external magnetic field. Laser Part. Beams 21, 6571.Google Scholar
Rosmej, F.B., Renner, O., Krousky, E., Krousky, E., Wieser, J., Schollmeier, M., Krasa, J., Laska, L., Kralikova, B., Skala, J., Bodnar, M., Rosmej, O.N. & Hoffmann, D.H.H. (2002). Space-resolved analysis of highly charged radiating target ions generated by kilojoule laser beams. Laser Part. Beams 20, 555557.Google Scholar
Semerok, A., Salle, B., Wagner, J.F. & Petite, G. (2002). Femtosecond, picosecond, and nanosecond laser microablation: Laser plasma and crater investigation. Laser Part. Beams 20, 6772.Google Scholar
Sharkov, B.Y., Kondrashev, S., Roudskoy, I., Savin, S., Shumshurov, A., Haseroth, H., Kugler, H., Langbein, K., Lisi, N., Magnusson, H., Scrivens, R., Schnuringer, J.C., Tambini, J., Homenko, S., Makarov, K., Roerich, V., Stepanov, A. & Satov, Y. (1998). Laser ion source for heavy ion synchrotrons. Rev. Sci Instr. 69, 10351039.Google Scholar
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, N., Gryaznov, V., Hoffmann, D.H.H., Houlsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: non-linear bunch rotation in SIS100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485497.Google Scholar
Ying, M.J., Xia, Y.Y., Sun, Y.M., Zhao, M.W., Ma, Y.C., Liu, X.D., Li, Y.F. & Hou, X.Y. (2003). Plasma properties of a laser ablated aluminum in air. Laser Part. Beams 21, 97101.Google Scholar