Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T20:52:54.359Z Has data issue: false hasContentIssue false

Inverse population of the H-like F ion levels in a recombining laser-produced plasma confined in a strong magnetic field

Published online by Cambridge University Press:  09 March 2009

A. Faryński
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
P. Gogolewski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
L. Karpiński
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Kuśnierz
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Makowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Mroczkowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Szczurek
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
B. A. Bryunetkin
Affiliation:
National Scientific and Research Institute for Physical-Technical and Radio-Technical Measurements, Moscow, Russia
A. J. Faenov
Affiliation:
National Scientific and Research Institute for Physical-Technical and Radio-Technical Measurements, Moscow, Russia
I. J. Skobelev
Affiliation:
National Scientific and Research Institute for Physical-Technical and Radio-Technical Measurements, Moscow, Russia

Abstract

Experimental investigations of laser-produced plasma expansion in a strong (−20 T) magnetic field have been carried out. The image and spectra of the plasma flame in the soft X-ray spectral region have been obtained. It has been shown that the strong magnetic field limits the transverse plasma expansion and strongly effects the ion-level populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boiko, V.A. et al. 1982 Prepr. FIAN SSSR 237 (in Russian).Google Scholar
Boiko, V.A. et al. 1983a Kvantovaya Elektronika 10, 901 (in Russian).Google Scholar
Boiko, V.A. et al. 1983b Kvantovaya Elektronika 10, 1286 (in Russian).Google Scholar
Boiko, V.A. et al. 1984 IEEE J. Quant. Electron. QE-10, 203.Google Scholar
Bryunetkin, B.A. et al. 1986 Lett. JTF 12, 613 (in Russian).Google Scholar
Duguay, M.A. & Rentzpis, M.P. 1967 Appl. Phys. Lett. 10, 350.Google Scholar
Gudzenko, L.I. & Shelepin, L. 1965 Doklady AN SSSR, 160, 1296 (in Russian).Google Scholar
Herman, P.R. et al. 1988 IEEE Trans. Plasma Sci. 16, 520.Google Scholar
Jamelot, D. et al. 1988 IEEE Trans. Plasma Sci. 16, 497.Google Scholar
Keane, C. et al. 1986 Rev. Sci. Instrum. 57, 1296.CrossRefGoogle Scholar
Kim, D. et al. 1989 Opt. Lett. 14, 665.Google Scholar
Lewis, C.Z.S. et al. 1988 Plasma Phys. Control. Fusion 30, 35.Google Scholar
London, R.A. et al. 1989 J. Phys. B. Atom. Mol. Opt. Phys. 22, 3363.CrossRefGoogle Scholar
MacGowan, B.J. et al. 1990 Phys. Rev. Lett. 65, 420.Google Scholar
Milchberg, H. et al. 1985 Appl. Phys. Lett. 47, 1151.Google Scholar
Nowak, A. & Faryński, A. 1982 IPPLM Report 8/III/82 (in Polish).Google Scholar
Silfvast, W.T. et al. 1979 Appl. Phys. Lett. 34, 213.Google Scholar
Silfvast, W.T. & Wood, O.R. II 1982 Optics Lett. 7, 34.Google Scholar
Suckewer, S. & Fishman, H. 1980 J. Appl. Phys. 51, 1922.CrossRefGoogle Scholar
Suckewer, S. et al. 1983 IEEE J. Quant. Electron. QE-19, 1855.Google Scholar
Suckewer, S. et al. 1985 Phys. Rev. Lett. 55, 1753.Google Scholar
Suckewer, S. et al. 1986 Phys. Rev. Lett. 57, 1004.Google Scholar
Suckewer, S. 1988 in Proceedings of the OSA Topical Meeting on Short Wavelength Coherent Radiation: General and Applied, Vol. 2, p. 36.Google Scholar