Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T20:08:13.503Z Has data issue: false hasContentIssue false

Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation

Published online by Cambridge University Press:  14 April 2010

A. Menéndez-Manjón
Affiliation:
Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany
S. Barcikowski*
Affiliation:
Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany Excellence Cluster REBIRTH, Hollerithallee 8, D-30419 Hannover, Germany
G.A. Shafeev
Affiliation:
General Physics Institute, 38 Vavilov street, 119991, Moscow, Russia
V.I. Mazhukin
Affiliation:
Institute for Mathematical Modelling4A Miusskaya Pl., 125047, Moscow, Russia
B.N. Chichkov
Affiliation:
Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany Excellence Cluster REBIRTH, Hollerithallee 8, D-30419 Hannover, Germany
*
Address correspondence and reprint requests to: Stephan Barcikowski, Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany. E-mail: [email protected]

Abstract

The dependence of nanoparticle size distributions on laser intensity profile was determined during infrared femtosecond laser ablation of silver targets in air. Laser parameters were adjusted to ablate at the same peak fluence with spatially homogeneous (flat-top) and inhomogeneous (Gaussian) intensity distributions formed by diffractive optical elements. Aerodynamic particle size was measured online by an electric low-pressure cascade impactor. Narrower size distributions were detected for the flat-top intensity profile in the fluence range from 0.6 to 4.4 J/cm2, while the Gaussian beam produced broad and bimodal distributions. The aerodynamic number frequency of the primary nanoparticulate fraction (40 nm) was equal to the number frequency of the submicron agglomerate fraction (200 nm) at laser fluence of 1 J/cm2. The Feret diameter of primary particles was 80 nm. Geometrical interpretation of the irradiated spots at the corresponding laser fluence regimes explains the formation of bimodal (submicron and nanoparticulate) size distribution in the case of Gaussian beams. The bimodality is attributed to different thermalization pathways during laser ablation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashcroft, N.W. & Mermin, N.D. (1987). Solid State Physics. New York: Harcourt College Publishers.Google Scholar
Barcikowski, S., Hahn, A. & Chichkov, B.N. (2007 a). Nanoparticles as potential risk during femtosecond laser ablation. J. Laser Appl. 19, 6573.CrossRefGoogle Scholar
Barcikowski, S., Hahn, A., Kabashin, A.V. & Chichkov, B.N. (2007 b). Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl. Phys. A 87, 4755.CrossRefGoogle Scholar
Barcikowski, S., Walter, J., Hahn, A., Koch, J., Haloui, H., Herrmann, T. & Gatti, A. (2010). Picosecond and femtosecond laser machining may cause health risks related to nanoparticle emission of Laser Micro/Nanoeng (in press).CrossRefGoogle Scholar
Borm, P.J.A. & Kreyling, W. (2004). Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J. Nanosci. Nanotech. 4, 521531.CrossRefGoogle ScholarPubMed
Bunte, J., Barcikowski, S., Puester, T., Burmester, T., Brose, M., Ludwig, T. (2004). Secondary hazards: Particle and X-ray emission. In Femtosecond Technlolgy for Technical and Medical Applications. pp. 309321. Berlin: Springer.CrossRefGoogle Scholar
Chaurasia, S., Munda, D.S., Ayyub, P., Kulkarni, N., Gupta, N.K. & Dhareshwar, L.J. (2008). Laser plasma interaction in copper nano-particle targets. Laser Part. Beams 26, 473478.CrossRefGoogle Scholar
Chichkov, B.N., Momma, C., Nolte, S., Von Alvensleben, F. & Tunnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109115.CrossRefGoogle Scholar
Colgan, J., Abdallah, J., Faenov, A.Y., Pikuz, T.A., Skobelev, I.Y., Fortov, V.E., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N. & Yamakawa, K. (2008). The role of hollow atoms in the spectra of an ultrashort-pulse-laser-driven Ar cluster target. Laser Part. Beams 26, 8393.Google Scholar
Dahotre, N.B. & Harimkar, S.P. (2007). Laser Drilling. In Laser Fabrication and Micromachining of Materials (Dahotre, N.M. and Harimkar, S.P., Ed). pp 97137. New York: Springer.Google Scholar
Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S. & Lereah, Y. (2004). Synthesis of nanoparticles with femtosecond laser pulses. Phys. Rev. B 69, 144119/1-6.CrossRefGoogle Scholar
Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., Ezersky, V. & Eliezer, D. (2005). Nanoparticles and nanotubes induced by femtosecond lasers. Laser Part. Beams 23, 1519.CrossRefGoogle Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Giulietti, D., Betti, S., Galimberti, M., Gamucci, A., Giulietti, A., Gizzi, L.A., Labate, L., Levato, T., Tomassini, P., Marques, J.R., Bourgeois, N., Dufrenoy, S.D., Ceccotti, T., Monot, P., Reau, F., Popescu, H., D'oliveira, P., Martin, P., Fukuda, Y., Boldarev, A.S., Gasilov, S.V. & Gasilov, V.A. (2008). Non-adiabatic cluster expansion after ultrashort laser interaction. Laser Part. Beams 26, 6981.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Part. Beams 27, 281–90.Google Scholar
Gamaly, E.G., Luther-Davies, B., Kolev, V.Z., Madsen, N.R., Duering, M. & Rode, A.V. (2005 a). Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser Part. Beams 23, 167176CrossRefGoogle Scholar
Gamaly, E.G., Madsen, N.R., Duering, M., Rode, A.V., Kolev, V.Z. & Luther-Davis, B. (2005 b). Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface. Phys. Rev. B 71, 63106315.CrossRefGoogle Scholar
Gamaly, E.G., Rode, A.V. & Luther-Davies, B. (2000). Formation of diamond-like carbon films and carbon foam by ultrafast laser ablation. Laser Part. Beams 18, 245254.CrossRefGoogle Scholar
Hinds, W.C. (1998). Aerosol Technology – Properties, Behavior, and Measurement of Airborne Particles. New York: Wiley-VCH.Google Scholar
International Commission on Radiological Protection. (1994). Human Respiratory Tract Model for Radiological Protection. New York: Pergamon.Google Scholar
Kabashin, A.V. & Meunier, M. (2003). Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 79417943.CrossRefGoogle Scholar
Latif, A., Anwar, N.S., Aleem, M.A., Rafique, M.S. & Khaleeq-Ur-Rahman, M. (2009). Influence of number of laser shots on laser induced microstructures on Ag and Cu targets. Laser Part. Beams 27, 129136.CrossRefGoogle Scholar
Lehecka, T., Mostovych, A. & Thomas, J. (2008). Long duration light emission from femtosecond laser–target interactions. Appl Phys A 92, 727741.CrossRefGoogle Scholar
Momma, C., Nolte, S., Kamlage, G., Von Alvensleben, F. & Tünnermann, A. (1998). Beam delivery of femtosecond laser radiation by diffractive optical elements. Appl. Phys. A 67, 517520.CrossRefGoogle Scholar
Noël, S., Hermann, J. & Itina, T. (2007). Investigation of nanoparticle generation during femtosecond laser ablation of metals. Appl. Surf. Sci. 253, 63106315.Google Scholar
Palik, E.D. (1985). Handbook of Optical Constants of Solids. New York: Academic Press.Google Scholar
Petersen, S. & Barcikowski, S. (2009). In-situ bioconjugation - Single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 19, 16.Google Scholar
Petersen, S., Jakobi, J. & Barcikowski, B. (2009). In-situ bioconjugation of nanoparticles—Novel laser based approach to pure nanoparticle-conjugates. Appl. Surf. Sci. 255, 54355438.Google Scholar
Semerok, A., Chaléard, C., Detalle, V., Lacour, J.L., Mauchien, P., Meynadier, P., Nouvellon, C., Sallé, B., Palianov, P., Perdrix, M. & Petite, G. (1999). Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Appl. Surf. Sci. 138–139, 311314.Google Scholar
Shafeev, G.A. (2008 a). Formation of nanoparticles under laser ablation of solids in liquids. In Nanoparticles: New Research (Lombardi, S.L., Ed.), pp. 137. New York: Nova Science Publishers, Inc.Google Scholar
Shafeev, G.A. (2008 b). Laser-based formation of nanoparticles. In Lasers in Chemistry (Lackner, M., Ed.), Vol. 2, pp. 713741. Weinheim, Germany: Wiley VCH.Google Scholar
Shafeev, G.A., Freysz, E. & Bozon-Verduraz, F. (2004). Self-influence of a femtosecond laser beam upon ablation of Ag in liquids. Appl. Phys. A 78, 307309.CrossRefGoogle Scholar
Trtica, M.S., Radak, B.B., Gakovic, B.M., Milovanovic, D.S., Batani, D. & Desai, T. (2009). Surface modifications of Ti6A14V by a picosecond Nd:YAG laser. Laser Part. Beams 27, 8590.CrossRefGoogle Scholar
Truong, S.L., Levi, G., Bozon-Verduraz, F., Petrovskaya, A.V., Simakin, A.V. & Shafeev, G.A. (2007). Generation of nanospikes via laser ablation of metals in liquid environment and their activity in surface-enhanced Raman scattering of organic molecules. Appl. Surf. Sci. 254, 12361239.Google Scholar
Wang, Z., Zheng, H. & Zhou, W. (2009). Ultrashort laser subsurface micromachining of three-dimensional microfluidic structures inside photosensitive glass. Laser Part. Beams 27, 521528.CrossRefGoogle Scholar