Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T03:23:30.189Z Has data issue: false hasContentIssue false

Influence of Au M-band flux asymmetry on implosion symmetry

Published online by Cambridge University Press:  17 April 2017

S. Jiang*
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
L. Li
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
L. Jing
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
L. Kuang
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
H. Li
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
L. Zhang
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
Z. Lin
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China
Y. Ding
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, People's Republic of China Center for Applied Physics and Technology, Peking University, Beijing, 100871, People's Republic of China
*
Address correspondence and reprint requests to: S. Jiang, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang, 621900, People's Republic of China. E-mail: [email protected]

Abstract

In indirect-drive inertial confinement fusion, the radiation symmetry must be controlled for the achievement of hotspot ignition. The radiation symmetry is of great importance. In this paper, we investigate the drive asymmetry of the M-band (2–5 keV) radiation emitted from an Au holhraum wall by using the three-dimensional view-factor code IRAD3D. Analysis of the M-band flux drive at the Shenguang-III laser facility shows that it is asymmetric and that the asymmetry varies with time. For a given cross section over the pole, the initial M-band flux asymmetries are P2 = 11.59, P4 = 1.41, and P6 = −0.64%. When the asymmetries are artificially added to a symmetric radiation drive, the position of the deuterium-tritium (DT) ice/gas interface is asymmetric for a National Ignition Facility capsule in 1D simulation. This means that M-band flux asymmetry can lead to implosion asymmetry even if the total radiation is symmetric. Pure CH and Si-doped CH capsules are considered. The results show that a mid-Z dopant can partly reduce the asymmetry. However, the asymmetry is still very large. Thus, it is necessary to study the M-band flux asymmetry and its influence on the implosion symmetry.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Delamater, N.D., Lindman, E.L., Magelssen, G.R., Failor, B.H., Murphy, T.J., Hauer, A.A., Gobby, P., Moore, J.B., Gomez, V., Gifford, K., Kauffman, R.L., Landen, O.L., Hammel, B.A., Glendinning, G., Powers, L.V., Suter, L.J., Dixit, S., Peterson, R.R. & Richard, A.L. (2000). Observation of reduced beam deflection using smoothed beams in gas-filled hohlraum symmetry experiments at Nova. Phys. Plasmas 7, 16091612.Google Scholar
Delamater, N.D., Magelssen, G.R. & Hauer, A.A. (1996). Reemission technique for symmetry measurements in Hohlraum targets containing a centered high-Z ball. Phys. Rev. E 53, 5240.Google Scholar
Dittrich, T.R., Hurricane, O.A., Callahan, D.A., Dewald, E.L., Döppner, T., Hinkel, D.E., Hopkins, L.F.B., Pape, S.L., Ma, T., Milovich, J.L., Moreno, J.C., Patel, P.K., Park, H.S., Remington, B.A., Salmonson, J.D. & Kline, J.L. (2014). Design of a high-foot high-adiabat ICF capsule for the national ignition facility. Phys. Rev. Lett. 112, 055002.Google Scholar
Dewald, E.L., Milovich, J.L., Michel, P., Landen, O.L., Kline, J.L., Glenn, S., Jones, O., Kalantar, D.H., Pak, A., Robey, H.F., Kyrala, G.A., Divol, L., Benedetti, L.R., Holder, J., Widmann, K., Moore, A., Schneider, M.B., Döppner, T., Tommasini, R., Bradley, K.D., Bell, P., Ehrlich, B., Thomas, C.A., Shaw, M., Widmayer, C., Callahan, D.A., Meezan, N.B., Town, R.P.J., Hamza, A., Dzenitis, B., Nikroo, A., Moreno, K., Wonterghem, B.V., MacKinnon, A.J., Glenzer, S.H., MacGowan, B.J., Kilkenny, J.D., Edwards, M.J., Atherton, L.J. & Moses, E.I. (2013). Early-time symmetry tuning in the presence of cross-beam energy transfer in ICF experiments on the National Ignition Facility. Phys. Rev. Lett. 111, 235001.Google Scholar
Dewald, E.L., Milovich, J., Thomas, C., Kline, J., Sorce, C., Glenn, S. & Landen, O.L. (2011). Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments. Phys. Plasmas 18, 092703.Google Scholar
Eidmann, K., Meyer-Ter-Vehn, J., Schlegel, T. & Hüller, S. (2000). Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 1202.CrossRefGoogle ScholarPubMed
Haan, S.W., Lindl, J.D., Callahan, D.A., Clark, D.S., Salmonson, J.D., Hammel, B.A., Atherton, L.J., Cook, R.C., Edwards, M.J., Glenzer, S., Hamza, A.V., Hatchett, S.P., Herrmann, M.C., Hinkel, D.E., Ho, D.D., Huang, H., Jones, O.S., Kline, J., Kyrala, G., Landen, O.L., MacGowan, B.J., Marinak, M.M., Meyerhofer, D.D., Milovich, J.L., Moreno, K.A., Moses, E.I., Munro, D.H., Nikroo, A., Olson, R.E., Peterson, K., Pollaine, S.M., Ralph, J.E., Robey, H.F., Spears, B.K., Springer, P.T., Suter, L.J., Thomas, C.A., Town, R.P., Vesey, R., Weber, S.V., Wilkens, H.L. & Wilson, D.C. (2011). Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18, 051001.Google Scholar
Huser, G., Courtois, C. & Monteil, M.C. (2009). Wall and laser spot motion in cylindrical hohlraums. Phys. Plasmas 16, 032703.Google Scholar
Jiang, S.E., Jing, L.F., Huang, Y.B. & Ding, Y.K. (2014). Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion. Phys. Plasmas 21, 102710.Google Scholar
Jing, L.F., Jiang, S.E., Yang, D., Li, H., Zhang, L., Lin, Z.W., Li, L.L., Kuang, L.Y., Huang, Y.B. & Ding, Y.K. (2015). Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion. Phys. Plasmas 22, 022709.Google Scholar
Kyrala, G.A., Kline, J.L., Dixit, S., Glenzer, S., Kalantar, D., Bradley, D., Izumi, N., Meezan, N., Landen, O., Callahan, D., Weber, S.V., Holder, J.P., Glenn, S., Edwards, M.J., Koch, J., Suter, L.J., Haan, S.W., Town, R.P.J., Michel, P., Jones, O., Langer, S., Moody, J.D., Dewald, E.L., Ma, T., Ralph, J., Hamza, A., Dzenitis, E. & Kilkenny, J. (2011). Symmetry tuning for ignition capsules via the symcap technique. Phys. Plasmas 18, 056307.Google Scholar
Landen, O.L., Edwards, J., Haan, S.W., Robey, H.F., Milovich, J., Spears, B.K., Weber, S.V., Clark, D.S., Lindl, J.D. & MacGowan, B.J. (2011). Capsule implosion optimization during the indirect-drive National Ignition Campaign. Phys. Plasmas 18, 051002.Google Scholar
Li, L.L., Jiang, S.E., Zhang, L., Zheng, J.H., Qing, B., Zhang, J.Y., Kuang, L.Y. & Li, H. (2015). The importance of the transmission flux in evaluating the preheat effect in x-ray driven ablation. Phys. Plasmas 22, 022702.Google Scholar
Li, L.L., Zhang, L., Jiang, S.E., Guo, L., Qing, B., Li, Z.C., Zhang, J.Y., Yang, J.M. & Ding, Y.K. (2014). The M-band transmission flux of the plastic foil with a coated layer of silicon or germanium. Appl. Phys. Lett. 104, 054106.Google Scholar
Li, X., Lan, L., Meng, X., He, X., Lai, D. & Feng, T. (2010). Study on Au+ U+ Au sandwich Hohlraum wall for ignition targets. Laser Part. Beams 28, 7581.Google Scholar
Lindl, J.D. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Lindl, J.D., Landen, O., Edwards, J., Moses, E. & NIC TEAM (2014). Review of the national ignition campaign 2009–2012. Phys. Plasmas 21, 020501.Google Scholar
Lindl, J.D. & Moses, E.I. (2011). Special topic: Plans for the National Ignition Campaign (NIC) on the National Ignition Facility (NIF): On the threshold of initiating ignition experiments. Phys. Plasmas 18, 050901050902.Google Scholar
MacFarlane, J.J., Golovkin, I.E., Mancini, R.C., Welser, L.A., Bailey, J.E., Koch, J.A., Mehlhorn, T.A., Rochau, G.A., Wang, P. & Woodruff, P. (2005). Dopant radiative cooling effects in indirect-drive Ar-doped capsule implosion experiments. Phys. Rev. E 72, 066403.Google Scholar
Magelssen, G.R., Delamater, N.D., Lindman, E.L. & Hauer, A.A. (1998). Measurements of early time radiation asymmetry in vacuum and methane-filled Hohlraums with the reemission ball technique. Phys. Rev. E 57, 4663.Google Scholar
Marinak, M.M., Kerbel, G.D., Gentile, N.A., Jones, O., Munro, D., Pollaine, S., Dittrich, T.R. & Haan, S.W. (2001). Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas 8, 22752280.Google Scholar
Meezan, N.B., Atherton, L.J., Callahan, D.A., Dewald, E.L., Dixit, S., Dzenitis, E.G., Edwards, M.J., Haynam, C.A., Hinkel, D.E., Jones, O.S., Landen, O., London, R.A., Michel, P.A., Moody, J.D., Milovich, J.L., Schneider, M.B., Thomas, C.A., Town, R.P.J., Warrick, A.L., Weber, S.V., Widmann, K., Glenzer, S.H., Suter, L.J., MacGowan, B.J., Kline, J.L., Kyrala, G.A. & Nikroo, A. (2010). National Ignition Campaign Hohlraum energetics. Phys. Plasmas 17, 056304.Google Scholar
Merrill, F.E. (2015). Imaging with penetrating radiation for the study of small dynamic physical processes. Laser Part. Beams 33, 425431.Google Scholar
Murakami, M. (1992). Analysis of radiation symmetrization in hohlraum targets. Nucl. Fusion 32, 17151724.Google Scholar
Murakami, M. & Meyer-Ter-Vehn, J. (1991). Radiation symmetrization in indirectly driven ICF targets. Nucl. Fusion 31, 13331341.Google Scholar
Olson, R.E., Leeper, R.J., Nobile, A. & Oertel, J.A. (2003). Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials. Phys. Rev. Lett. 91, 235002.Google Scholar
Ramirez, J., Ramis, R. & Meyer-Ter-Vehn, J. (1998). Integrated numerical simulation of indirect laser-driven implosion for ICF. Laser Part. Beams 16, 9199.Google Scholar
Ramis, R. (2013). Hydrodynamic analysis of laser-driven cylindrical implosions. Phys. Plasmas 20, 082705.Google Scholar
Ramis, R., Meyer-Ter-Vehn, J. & Ramrez, J. (2009). MULTI2D-A computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun. 180, 977994.Google Scholar
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. (1988). MULTI: A computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun. 49, 475505.Google Scholar
Ramis, R., Temporal, M., Canaud, B. & Brandon, V. (2014). Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility. Phys. Plasmas 21, 082710.Google Scholar
Robey, H.F., Perry, T.S., Park, H.-S., Amendt, P., Sorce, C.M., Compton, S.M., Campbell, K.M. & Knauer, J.P. (2005). Experimental measurement of Au M-band flux in indirectly driven double-shell implosions. Phys. Plasmas 12, 072701.CrossRefGoogle Scholar
Schnittman, J.D. & Craxton, R.S. (1996). Indirect – drive radiation uniformity in tetrahedral hohlraums. Phys. Plasmas 3, 37863797.Google Scholar
Simakov, A.N., Wilson, D.C., Yi, S.A., Kline, J.L., Clark, D.S., Milovich, J.L., Salmonson, J.D. & Batha, S.H. (2014). Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility. Phys. Plasmas 21, 022701.Google Scholar
Varnum, W.S., Delamater, N.D., Evans, S.C., Gobby, P.L., Moore, J.E., Wallace, J.M., Watt, R.G., Colvin, J.D., Turner, R. & Glebov, V. (2000). Progress toward Ignition with Noncryogenic Double-Shell Capsules. Phys. Rev. Lett. 84, 51535155.Google Scholar