Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T02:51:41.183Z Has data issue: false hasContentIssue false

Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations

Published online by Cambridge University Press:  07 June 2005

J. BREIL
Affiliation:
Centre Lasers Intenses et Applications, CEA—CNRS, Talence Cedex, France
L. HALLO
Affiliation:
Centre Lasers Intenses et Applications, CEA—CNRS, Talence Cedex, France
P.H. MAIRE
Affiliation:
Centre Lasers Intenses et Applications, CEA—CNRS, Talence Cedex, France
M. OLAZABAL-LOUMÉ
Affiliation:
Centre Lasers Intenses et Applications, CEA—CNRS, Talence Cedex, France

Abstract

Hydrodynamic instabilities play an important role in the target compression for inertial confinement fusion (ICF). We present the analytical solution of a perturbed isentropic implosion. We compare the analytical solution to the results obtained with perturbation and bi-dimensional Lagrangian hydrodynamic codes. We also compare results from bi-dimensional code and perturbation code on an ICF like test case.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Abgrall, R., Breil, J., Maire, P.-H. & Ovadia, J. (2004). A Lagrangian scheme for multidimensional compressible flow. Submitted to J. Comput. Phys.Google Scholar
Breil, J., Hallo, L., Maire, P.-H. & Olazabal-Loumé, M. (2004). Hydrodynamic instabilities in cylindrical geometry self-similar models and numerical simulations. 31st EPS Conference on Plasma Physics, London.
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Phillippe, F. (2004). Progress in direct-drive fusion studies for the Laser Megajoule. Laser Part. Beams 22, 109.CrossRefGoogle Scholar
Han, S.J. & Suydam, B.R. (1982). Hydrodynamic instabilities in an imploding cylindrical plasma shell. Phys. Review A 26, 926939.CrossRefGoogle Scholar
Holstein, P.A, Chaland, F., Charpin, C., Dufour, J.M., Dumont, H., Giorla, J., Hallo, L., Laffite, S., Malinie, G., Saillard, Y., Schurtz, G., Vandenboomgaerde, M. & Wagon, F. (1998). Evolution of the target design for the MJ laser. Laser Part. Beams 17, 403413.Google Scholar
Kartoon, D., Oron, D., Arazi, L. & Shvarts, D. (2003). Three-dimensional multimode Rayleigh-Taylor and Richtmyer-Meschkov instabilities at all density ratios. Laser Part. Beams 21, 327.CrossRefGoogle Scholar
Kidder, R.E. (1976). Laser-driven compression of hollow shells: power requirements and stability limitations. Nuclear Fusion 1, 314.CrossRefGoogle Scholar
Llor, A. (2003). Bulk turbulent transport and structure in Rayleigh-Taylor, Richtmyer-Meschkov, and variable acceleration instabilities. Laser Part. Beams 21, 305.CrossRefGoogle Scholar
Llor, A. & Bailly, P. (2003). A new turbulent two-field concept for medeling Rayleigh-Taylor, Richtmyer-Meschkov, and Kelvin-Helmholtz mixing layers. Laser Part. Beams 21, 311.CrossRefGoogle Scholar
MacCrory, R.L., Morse, R.L., Taggart, K.A. (1977). Growth and saturation of instability of spherical implosions driven by laser or charged particle beams. Nucl. Sci. Eng. 64, 163176.CrossRefGoogle Scholar
Schilling, O. (2003). The eigth international workshop on the physics of compressible turbulent mixing. Laser Part. Beams 21, 301.CrossRefGoogle Scholar
Vandenboomgaerde, M. (2003a). Nonlinear analytic growth rate of a single-mode Richtmyer-Meschkov instability. Laser Part. Beams 21, 317.Google Scholar
Vandenboomgaerde, M., Cherfils, C., Galmiche, D., Gauthier, S. & Raviart, P.A. (2003b). Efficient perturbation methods for Richtmyer-Meschkov and Rayleigh-Taylor instabilities: Weakly nonlinear stage and beyond. Laser Part. Beams 21, 327.Google Scholar