Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-03T19:09:59.688Z Has data issue: false hasContentIssue false

Hundred picoseconds laser pulse amplification based on scalable two-cells Brillouin amplifier

Published online by Cambridge University Press:  28 May 2014

H. Yuan
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Z.W. Lu*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Y.L. Wang*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Z.X. Zheng
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Y. Chen
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Zhiwei Lu or Yulei Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected] or [email protected]
Address correspondence and reprint requests to: Zhiwei Lu or Yulei Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected] or [email protected]

Abstract

Hundred picoseconds laser pulse with high energy and high peak power has broad application prospects such as inertial confinement fusion shock ignition. But it is hard to get effective amplification through MOPA or chirped pulse amplification method. Through simulated Brillouin scattering method, 100 picoseconds laser pulse can be amplified efficiently. To be able to meet the need of high energy and high-intensity laser pulse amplification, scalable two cell structure and four different FC series liquid were used to fulfill this experiment. The results indicate that the magnification of Stokes energy and efficiency of energy extraction are closely related to medium parameters and energy parameters. The minimum width of 340 ps Stokes pulse was amplified by 13.5 times in this experiment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J.Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.CrossRefGoogle ScholarPubMed
Dane, C.B., Neuman, W.A. & Loyd, A. (1994). Hacke high-energy SBS pulse compression. IEEE. J. Quantum. Electr. 30, 19071915.CrossRefGoogle Scholar
Dane, C.B., Zapata, L.E. & Neuman, W.A. (1995). Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction. IEEE.J. Quant. Electron. 31, 148163.CrossRefGoogle Scholar
Eichler, H.J., Haase, A. & Liu, B. (1996). Design and construction of high power solid-state laser amplifiers with phase conjugation mirror. SPIE 2889, 819.Google Scholar
Eichler, H.J., Konig, I.R., Patzold, H.J. & Schwartz, J. (1995). SBS mirrors for XeCl lasers with a broad spectrum. Appl. Phys. B 61, 7380.CrossRefGoogle Scholar
Hackel, L.A., Dane, C.B. & Zapata, L.E. (1994). Phase conjugation lasers applied to X-ray generation. Internation. J. Nonlinear Opt. Phys. 3, 137167.CrossRefGoogle Scholar
Marcus, G., Pearl, S. & Pasmanik, G. (2008). Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm. J. Appl. Phys. 103, 103105.CrossRefGoogle Scholar
Mccrory, R.L., Meyerhofer, D.D., Betti, R., Boehly, T.R., Collins, T.J.B., Craxton, R.S., Delettrez, J.A., Edgell, D.H., Epstein, R., Froula, D.H., Glebov, V.Yu., Goncharov, V.N., Harding, D.R., Hu, S.X., Igumenshchev, I.V., Knauer, J.P., Loucks, S.J., Marozas, J.A., Marshall, F.J., Mckenty, P.W., Michel, T., Nilson, P.M., Radha, P.B., Regan, S.P., Sangster, T.C., Seka, W., Shmayda, W.T., Short, R.W., Shvarts, D., Skupsky, S., Soures, J.M., Stoeckl, C., Theobald, W., Yaakobi, B., Frenje, J.A., Casey, D.T., Li, C.K., Petrasso, R.D., Séguin, F.H., Padalino, S.J., Letcher, K.A., Celliers, P.M., Collins, G.W. & Robey, H.F. (2008). Progress in direct-drive inertial confinement fusion. Phys. Plasmas 15, 055503.CrossRefGoogle Scholar
Park, H., Lim, C., Yoshida, H. & Nakatsuka, Ma. (2006). Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids. Jpn. J. Appl. Phys. 45, 50735075.CrossRefGoogle Scholar
Schiemann, S., Ubachs, W. & Hogervorst, W. (1997). Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. IEEE J. Quant. Electron. 33, 358366.CrossRefGoogle Scholar
Theobald, W., Betti, R., Stoekl, C., Anderson, K.S., Delettrez, J.A., Glebov, V.Yu., Goncharov, V.N., Marshall, F.J., Maywar, D.N., Mccrory, R.L., Meyerhofer, D.D, Radha, P.B., Sangster, T.C., Seka, W., Shvarts, D., Smalyuk, V.A., Solodov, A.A., Yaakboi, B., Zhou, C.D., Frenje, J.A., Li, C.K., Séguin, F.H., Petrasso, R.D. & Perkins, L.J. (2008). Initial experiments on the shock-ignition inertial confinement fusion concept. Phys. Plasmas 15, 056306.CrossRefGoogle Scholar
Velchev, I., Neshev, D., Hogervorst, W. & Ubachs, W. (1999). Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering. IEEE. J. Quant. Electron. 35, 18121816.CrossRefGoogle Scholar
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, Ma. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Express 17, 1365413662.CrossRefGoogle ScholarPubMed
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, Ma., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.CrossRefGoogle ScholarPubMed