Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T08:46:15.690Z Has data issue: false hasContentIssue false

Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications

Published online by Cambridge University Press:  28 February 2007

V. SIZYUK
Affiliation:
Argonne National Laboratory, Argonne, Illinois
A. HASSANEIN
Affiliation:
Argonne National Laboratory, Argonne, Illinois
T. SIZYUK
Affiliation:
Argonne National Laboratory, Argonne, Illinois

Abstract

Laser-produced plasma (LPP) devices are being developed as a light source for the extreme ultraviolet (EUV) lithography applications. One concern of such devices is to increase the conversion efficiency of laser energy to EUV light. A new idea based on the initiation and confinement of cumulative plasma jet inside a hollow laser beam is developed and simulated. The integrated computer model (HEIGHTS) was used to simulate the plasma behavior and the EUV radiation output in the LPP devices. The model takes into account plasma heat conduction and magnetohydrodynamic processes in a two-temperature approximation, as well as detailed photon radiation transport in 3D Monte Carlo model. The model employs cylindrical 2D version of a total variation-diminishing scheme (for the plasma hydrodynamics) and an implicit scheme with the sparse matrix linear solver (to describe heat conduction). Numerical simulations showed that the EUV efficiency of the proposed hollow-beam LPP device to be higher than the current standard devices.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aota, T. & Tomie, T. (2005). Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma. Phys. Rev. Lett. 94, 015004.Google Scholar
Attwood, D. (2004). Extreme ultraviolet light sources for semiconductor manufacturing. J. Phys. D 37(23).Google Scholar
Bakshi, V. (2006). EUV source technology: challenges and status. In EUV Sources for Lithography (Bakshi, V., Ed.), Ch. 1, pp. 325. Bellingham, WA: SPIE.
Braginskii, S.I. (1965). Transport processes in a plasma. In Reviews of Plasma Physics (Leontovich, M.A., Ed.), Vol. 1, p. 205. New York, NY: Consultants Bureau.
Choi, I.W., Daido, H., Yamagami, S., Nagai, K., Norimatsu, T., Takabe, H., Suzuki, M., Nakayama, T. & Matsui, T. (2000). Detailed space-resolved characterization of a laser-plasma soft-x-ray source at 13.5-nm wavelength with tin and its oxides. J. Opt. Soc. Am. B 17, 16161625.Google Scholar
Colombant, D.G. & Winsor, N.K. (1977). Thermal-force terms and self-generated magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 38, 697701.Google Scholar
Courtial, J., Dholakia, K., Allen, L. & Padgett, M.J. (1997). Second-harmonic generation and the conservation of orbital angular momentum with high-order laguerre-gaussian modes. Phys. Rev. A 56, 41934196.Google Scholar
Dattoli, G., Ottaviani, P.L. & Renieri, A. (2005). Free electron laser high gain devices. Laser Part. Beams 23, 303307.Google Scholar
de Bruijn, R., Koshelev, K. & Bijkerk, F. (2003). Enhancement of laser plasma EUV emission by shockwave–plasma interaction. J. Phys. D 36, L88.Google Scholar
de Bruijn, R., Koshelev, K.N., Zakharov, S.V., Novikov, V.G. & Bijkerk, F. (2005). Enhancement of laser plasma extreme ultraviolet emission by shockwave–plasma interaction. Phys. Plasma 12, 042701.Google Scholar
Desai, T. & Pant, H.C. (2000). Control of Rayleigh–Taylor instabilities in laser accelerated seeded targets. Laser Part. Beams 18, 119128.Google Scholar
Dunn, J., Filevich, J., Smith, R.F., Moon, S.J., Rocca, J.J., Keenan, R., Nilsen, J., Shlyaptsev, V.N., Hunter, J.R., Ng, A. & Marconi, M.C. (2005). Picosecond 14.7 nm interferometry of high intensity laser-produced plasmas. Laser Part. Beams 23, 913.Google Scholar
Eardley, M. (2006). Hollow laser beams. http://grad.physics.sunysb.edu/∼meardley/hollow.
Faenov, A., Pikuz, T., Magunov, A., Batani, D., Lucchini, G., Canova, F. & Piselli, M. (2004). Bright, point X-ray source based on a commercial portable 40 ps Nd:YAG laser system. Laser Part. Beams 22, 373379.Google Scholar
Fiedorowicz, H. (2005). Generation of soft X-rays and extreme ultraviolet (EUV) using a laser-irradiated gas puff target. Laser Part. Beams 23, 365373.Google Scholar
Goldman, S.R. & Schmalz, R.F. (1987). Magnetic field behavior beyond the laser spot. Phys. Fluids 30, 36083615.Google Scholar
Harilal, S.S., O'Shay, B. & Tillack, M.S. (2005). Debris mitigation in a laser-produced tin plume using a magnetic field. J. Appl. Phys. 98, 036102.Google Scholar
Hassanein, A., Sizyuk, V., Tolkach, V., Morozov, V. & Rice, B.J. (2003). HEIGHTS initial simulation of discharge-produced plasma hydrodynamics and radiation transport for EUV lithography. Proc. SPIE 5037, 714727.Google Scholar
Hassanein, A., Sizyuk, V., Tolkach, V., Morozov, V. & Rice, B.J. (2004a). HEIGHTS initial simulation of discharge produced plasma hydrodynamics and radiation transport for extreme ultraviolet lithography. J. Microlith. Microfab. Microsyst. 3, 130138.Google Scholar
Hassanein, A., Sizyuk, V., Tolkach, V., Morozov, V., Sizyuk, T., Rice, B.J. & Bakshi, V. (2004b). Simulation and optimization of DPP hydrodynamics and radiation transport for EUV lithography devices. Proc. SPIE 5374, 413422.Google Scholar
Heckenberg, N.R., McDuff, R., Smith, C.P. & White, A.G. (1992). Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221223.Google Scholar
Johnston, T.W. & Dawson, J.M. (1973). Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas. Phys. Fluids 16, 722.Google Scholar
Keyser, C., Schriever, G., Richardson, M. & Turcu, E. (2003). Studies of high-repetition-rate laser plasma EUV sources from droplet targets. Appl. Phys. A 77, 217221.Google Scholar
Kovenya, V.M., Lebedev, A.S. & Cherny, S.G. (1988). Numerical algorithms for solving the Euler and Navier-Stokes equations on the basis of the splitting up method. In Computational Fluid Dynamics (Davis, G.S. & Fletcher, C., Eds.), pp. 303315. Amsterdam: North-Holland.
Krücken, T., Bergmann, K., Juschkin, L. & Lebert, R. (2004). Fundamentals and limits for the EUV emission of pinch plasma sources for EUV lithography. J. Phys. D 37, 32133224.Google Scholar
Kruglov, V.I., Logvin, Yu.A. & Volkov, V.M. (1992). The theory of spiral laser beams in nonlinear media. J. Modern Opt. 39, 22772291.Google Scholar
Kubiak, G.D., Bernardez_II, L.J., Krenz, K.D. & Sweatt, W.C. (1999). Scale-up of a cluster jet laser plasma source for extreme ultraviolet lithography. Proc. SPIE 3676, 669678.Google Scholar
Labate, L., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Koster, P., Laville, S. & Tomassini, P. (2004). Ray-tracing simulations of a bent crystal X-ray optics for imaging using laser-plasma X-ray sources. Laser Part. Beams 22, 253259.Google Scholar
Leveque, R.J. (2002). Finite volume methods for hyperbolic problems. Cambridge, UK: Cambridge University Press.
Levinson, H.J. (2001). Principles of Lithography. Bellingham, WA: SPIE.
Miloshevsky, G.V., Sizyuk, V.A., Partenskii, M.B., Hassanein A., &Jordan, P.C. (2006). Application of finite-difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas. J. Comp. Phys. 212, 2551.Google Scholar
Miyamoto, S., Amano, S., Inoue, T., Shimoura, A., Kaku, K., Nica, P.-E., Kinugasa, H. & Mochizuki, T. (2005). EUV source developments on laser-produced plasmas using Xe cryogenic target and Li new scheme target. http://www.sematech.org/meetings/archives.htm.
Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics 38, 114.Google Scholar
Mora, P. (1981). Magnetic field generation in the underdense plasma. Phys. Fluids 24, 22192226.Google Scholar
Morozov, V., Sizyuk, V., Hassanein, A. & Tolkach, V. (2004a). Simulation of discharge produced plasma and EUV radiation in various z-pinch devices. Report No. ANL-ET-04/31. Argonne, IL: Argonne National Laboratory.
Morozov, V., Tolkach, V. & Hassanein, A. (2004b). Calculation of tin atomic data and plasma properties. Report ANL-ET-04/24. Argonne, IL: Argonne National Laboratory.
Myers, D.W., Fomenkov, I.V., Hansson, B.A.M., Klene, B.C. & Brandt, D.C. (2005). EUV source system development update: Advancing along the path to HVM. Proc. SPIE 5751, 248259.Google Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.Google Scholar
Ozaki, T., Kieffer, J.-C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101106.Google Scholar
Padgett, M. & Allen, L. (2000). Light with a twist in its tail. Contemp. Phys. 41, 275285.Google Scholar
Pankert, J., Apetz, R., Bergmann, K., Derra, G., Janssen, M., Jonkers, J., Klein, J., Kruecken, T., List, A., Loeken, M., Metzmacher, C., Neff, W., Probst, S., Prummer, R., Rosier, O., Seiwert, S., Siemons, G., Vaudrevange, D., Wagemann, D., Weber, A., Zink, P. & Zitzen O. (2005). Integrating Philips' extreme UV source in the alpha-tools. Proc. SPIE 5751, 260271.Google Scholar
Richardson, M., Koay, C.-S., Takenoshita, K., Keyser, C. & Al-Rabban, M. (2004a). High conversion efficiency mass-limited Sn-based laser plasma source for extreme ultraviolet lithography. J. Vac. Sci. Technol. B 22, 785790.Google Scholar
Richardson, M., Koay, C.-S., Takenoshita, K., Keyser, C., George, S., Teerawattansook, S., Al-Rabban, M. & Scott, H. (2004b). Laser plasma EUVL sources: progress and challenges. Proc. SPIE 5374, 447453.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Siegel, R. & Howell, J. (1981). Thermal Radiation Heat Transfer. Bellingham, WA: Hemisphere.
Silverman, P.J. (2002). The Intel Lithography Roadmap. Intel Tech. J. 3, 5561.Google Scholar
Sizyuk, V. & Hassanein, A. (2002). Hydrodynamic phenomena of gas-filled chamber due to target implosion in IFE systems. Report No. ANL-ET-02/26, Argonne, IL: Argonne National Laboratory.
Sizyuk, V., Hassanein, A., Morozov, V., Tolkach, V., Sizyuk T., &Rice, B. (2006). Numerical simulation of laser-produced plasma devices for EUV lithography using the heights integrated model. Num. Heat Transf. A 49, 215236.Google Scholar
Spitzer, L. (1962). Physics of Fully Ionized Gases, 2nd Ed. New York, NY: Interscience.
Spitzer, R.C., Orzechowski, T.J., Phillion, D.W., Kauffman, R.L. & Cerjan, C.J. (1996). Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime. J. Appl. Phys. 79, 22512258.Google Scholar
Stamm, U. (2004a). EUV source development at XTREME technologies—an update. http://www.sematech.org/meetings/archives/litho/euvl/20041101euvl/presentations/day1/So02_U_Stamm.pdf
Stamm, U. (2004b). Extreme ultraviolet light sources for use in semiconductor lithography—state of the art and future development. J. Phys. D 37, 32443253.Google Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.Google Scholar
Tóth, G. & Odstrčil, D. (1996). Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comp. Phys. 128, 82100.Google Scholar
Tóth, G. (2000). The ∇·B = 0 constraint in shock-capturing magnetohydrodynamics codes. J. Comp. Phys. 161, 605652.Google Scholar
Ullrich, A., Korner, H.J., Krotz, W., Ribitzki, G., Murnick, D.E., Matthias, E., Kienle, P. & Hoffmann, D.H.H. (1987). Heavy-ion excitation of rare-gas excimers. J. Appl. Phys. 62, 357361.Google Scholar
Wagner, T., Eberl, E., Frank, K., Hartmann, W., Hoffmann, D.H.H. & Tkotz, R. (1996). XUV amplification in a recombining z-pinch plasma. Phys. Rev. Lett. 76, 31243127.Google Scholar
White, J., Hayden, P., Dunne, P., Cummings, A., Murphy, N., Sheridan, P. & O'Sullivan, G. (2005). Simplified modeling of 13.5 nm unresolved transition array emission of a Sn plasma and comparison with experiment. J. Appl. Phys. 98, 113301.Google Scholar
Widner, M.M. (1973). Self-generated magnetic fields in laser plasmas. Phys. Fluids 16, 17781780.Google Scholar
Zeldovich, Ya. & Raizer, Yu. (1966). Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena. New York, NY: Academic.
Zimmerman, G.B. & Kruer, W.L. (1975). Numerical simulation of laser-initiated fusion. Comments Plasma Phys. Contr. Fusion 2, 5161.Google Scholar