Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:29:13.641Z Has data issue: false hasContentIssue false

Holistic Simulation for FIREX Project with FI3

Published online by Cambridge University Press:  15 October 2007

T. Johzaki*
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
H. Sakagami
Affiliation:
Department of Simulation Science, National Institute for Fusion Science, Toki, Japan
H. Nagatomo
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
K. Mima
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Japan
*
Address correspondence and reprint requests to: T. Johzaki, Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan. E-mail: [email protected]

Abstract

In fast ignition research, the clarification of core heating mechanism is one of the most critical issues. To understand and identify the crucial physics in fast heating, we developed the fast ignition integrated interconnecting code FI3 and carried out the core heating simulations for fast heating experiments with cone-guided targets. It was found that the scale length of the pre-plasma at the inner-surface of the cone and the density gap at the contact surface between the cone tip and the imploded core plasma strongly affect the efficiency of core heating. In the case of heating laser with intensity of 1020 W/cm2 and duration of 1 ps, the pre-plasma scale length of 1.5 µm is optimum for the core heating; the dense core is heated up to 0.86 keV. In the double scale length case (long scale of ~5 µm in underdense region and short scale of ~ 1 µm in overdense region), of which generation due to the pre-pulse irradiation of heating pulse is observed at the radiation–hydro simulations, the dense core is heated more efficiently than single short scale length cases. The contribution of fast ions to the core heating is also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies on laser-driven generation of fast high-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Campbell, R.B., Degroot, J.S., Mehlhorn, T.A., Welch, D.R. & Oliver, B.V. (2003). Collimation of petawatt laser-generated relativistic electron beams propagating through solid matter. Phys. Plasmas 10, 41694172.CrossRefGoogle Scholar
Campbell, R.B., Kodama, R., Mehlhorn, T.A., Tanaka, K.A. & Welch, D.R. (2005). Simulation of heating-compressed fast-ignition cores by petawatt laser-generated electrons. Phys. Rev. Lett. 94, 055001.CrossRefGoogle ScholarPubMed
Chen, H. & Wilks, S.C. (2005). Evidence of enhanced effective hot electron temperatures in ultraintense laser-solid interactions due to reflexing. Laser Part. Beams 23, 411416.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (2000). Erratum: Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 31, 1140.CrossRefGoogle Scholar
Deutsch, C., Bret, A. & Fromy, P. (2005). Mitigation of electromagnetic instabilities in fast ignition scenario. Laser Part. Beams 23, 58.CrossRefGoogle Scholar
Gremillet, L., Bonnaud, G. & Amiranoff, F. (2002). Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasmas 9, 941948.CrossRefGoogle Scholar
Gus'kov, S.Y. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Johzaki, T., Mima, K., Nakao, Y., Yokota, T. & Sumita, H. (2003). Analysis of core plasma heating by relativistic electrons in fast ignition. Fusion Sci. Technol. 43, 428436.CrossRefGoogle Scholar
Johzaki, T., Nagatomo, H., Mima, K., Sakagami, H. & Nakao, Y. (2004). Integrated simulations for fast ignition targets. J. Plasma Res. SERIES 6, 341344.Google Scholar
Johzaki, T., Nagatomo, H., Sakagami, H., Sentoku, Y., Nakamura, T., Mima, K., Nakao, Y. & Yokota, T. (2006). Core heating analysis of fast ignition targets by integrated simulations. J. Phys. IV France 133, 385389.CrossRefGoogle Scholar
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Nuclear fusion: fast heating scalable to laser fusion ignition. Nature 418, 933934.CrossRefGoogle ScholarPubMed
Lasinski, B., Langdon, A.B., Hatchett, S.P., Key, M.H. & Tabak, M. (1999). Particle-in-Cell simulations of ultra intense laser pulses propagating through overdense plasma for fast-ignitor and radiography applications. Phys. Plasmas 6, 20412047.CrossRefGoogle Scholar
Leon, P.T., Eliezer, S., Piera, M. & Marinez-Val, J.M. (2005). Inertial fusion features in degenerate plasmas. Laser Part. Beams 23, 193198.CrossRefGoogle Scholar
Mason, R. (2006). Heating mechanisms in short-pulse laser-driven cone targets. Phys. Rev. Lett. 96, 035001.CrossRefGoogle ScholarPubMed
Matsumoto, T., Taguchi, T. & Mima, K. (2006). Simulation of the nonlinear evolution of large scale relativistic electron flow in dense plasmas. Phys. Plasmas 13, 052701.CrossRefGoogle Scholar
Mima, K., Azechi, H., Fujita, H., Izawa, Y., Jitsuno, T., Johzaki, T., Kitagawa, Y., Kodama, R., Miyanaga, N., Nagai, K., Nagatomo, H., Nakatsuka, M., Nishimura, H., Norimatsu, T., Sakabe, S., Takabe, T., Tanaka, T.A., Yoshida, H., Yamanaka, T., Norreys, P., Zepf, M., Krushelnic, K.M., Habara, H. & Hall, T. (2002). Fast ignition experimental and theoretical researches toward fast ignition realization experiment (FIREX). http://www.iaea.org/programmes/ripc/physics/fec2002/pdf/if_3.pdf.Google Scholar
Nagatomo, H., Ohnishi, N., Mima, K., Sawada, K., Nishihara, K. & Takabe, H. (2001). Analysis of hydrodynamic instabilities in implosion using high-accuracy integrated implosion code. Proc. 2nd Int. Conf. on Inertial Fusion Sciences and Applications, Kyoto, Japan, 140142. Paris: Elsevier.Google Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Pukhov, A. & Meyer-Ter-Vehn, J. (1997). Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets. Phys. Rev. Lett. 79, 26862689.CrossRefGoogle Scholar
Ren, C., Tzoufras, M., Tsung, F.S., Mori, W.B., Morini, S., Fonseca, R.A., Silva, L.O., Adam, J.C. & Heron, A. (2004). Global simulation for laser-driven MeV electrons in fast ignition. Phys. Rev. Lett. 93, 185004.CrossRefGoogle ScholarPubMed
Sakagami, H. & Mima, K. (2001). Fast ignition simulations with collective PIC code. Proc. 2nd Int. Conf. on Inertial Fusion Sciences and Applications, Kyoto, Japan, 380383. Paris: Elsevier.Google Scholar
Sakagami, H. & Mima, K. (2004). Interconnection between hydro and PIC codes for fast ignition simulations. Laser Part. Beams 22, 4144.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Sentoku, Y., Cowan, T.E., Kemp, A. & Ruhl, H. (2003 b). High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.CrossRefGoogle Scholar
Sentoku, Y., Kemp, A. & Cowan, T. (2006). Full scale explicit PIC simulation of fast ignition experiment. J. Phys. IV France 133, 425427.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Kaw, P. & Nishikawa, K. (2003 a). Anomalous resistivity resulting from MeV-electron transport in overdense plasma. Phys. Rev. Lett. 90, 155001.CrossRefGoogle ScholarPubMed
Sentoku, Y., Mima, K., Kojima, S. & Ruhl, H. (2000). Magnetic instability by the relativistic laser pulses in overdense plasmas. Phys. Plasmas 7, 689695.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 30833087.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Taguchi, T., Antonsen, T.M. Jr. & Mima, K. (2004). Study of hot electron beam transport in high density plasma using 3d hybrid-Darwin code. Comput. Phys. Commun. 164, 269278.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Yokota, T., Nakao, Y., Johzaki, T. & Mima, K. (2006). Two-dimensional relativistic Fokker-Planck model for core plasma heating in fast ignition targets. Phys. Plasmas 13, 022702.CrossRefGoogle Scholar