Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T12:21:04.124Z Has data issue: false hasContentIssue false

Higher harmonic generation by self-focused q-Gaussian laser beam in preformed collisionless plasma channel

Published online by Cambridge University Press:  27 October 2014

Arvinder Singh*
Affiliation:
Department of Physics, National Institute of Technology Jalandhar, Jalandhar, India
Naveen Gupta
Affiliation:
Department of Physics, National Institute of Technology Jalandhar, Jalandhar, India
*
Address correspondence and reprints request to: Arvinder Singh, Department of Physics, National Institute of Technology Jalandhar, Jalandhar, India. E-mail: [email protected]

Abstract

This paper presents an investigation of self-focusing of a q-Gaussian laser beam and its effect on harmonic generation in a preformed collisionless parabolic plasma channel. In the presence of a q-Gaussian laser beam, the carriers get redistributed from high field region to low field region on account of ponderomotive force as a result of which a transverse density gradient is produced in the channel which in turn generates plasma wave at pump frequency. Generated plasma wave interacts with the incident laser beam and generate higher harmonics of the incident laser beam. Moment theory has been used to derive differential equation for the spot size of laser beam propagating through the channel. The differential equation so obtained has been solved numerically. The effect of the intensity of laser beam, deviation of intensity distribution of laser beam along its wave front from Gaussian distribution, plasma density and depth of channel on beam width of laser beam and harmonic yield has been investigated. The effect of order of higher harmonic on harmonic yield has been also investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 25892592.CrossRefGoogle ScholarPubMed
Bobin, J.L. (1985). High intensity laser plasma interaction. Phys. Rep. 122, 173274.Google Scholar
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., McPherson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 23092312.CrossRefGoogle ScholarPubMed
Brunel, F. (1990). Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high intensity limit. J. Opt. Soc. Am. B 7, 521526.Google Scholar
Burnett, N.H. & Corkum, P.B. (1989). Cold-plasma production for recombination extreme ultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6, 11951199.Google Scholar
Corkum, P.B., Rolland, C. & Rao, T.S. (1986). Super continuum Generation in gases. Phys. Rev. Lett. 57, 22682271.Google Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Erokhin, N., Zakharov, V.E. & Moiseev, S.S. (1969). Second harmonic generation by an electromagnetic wave incident on inhomogeneous plasma. Sov. Phys. JETP 29, 101.Google Scholar
Esaray, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. j IEEE J. Quan. Electron. 33, 1879.Google Scholar
Eder, D.C., Amendt, P., DaSilva, L.B., London, R.A., MacGowan, B.J., Matthews, D.L., Penetrante, B.M., Rosen, M.D., Wilks, S.C., Donnelly, T.D., Falcone, R.W. & Strobel, G.L. (1994). Tabletop X-ray lasers. Phys. Plasmas 1, 1744.CrossRefGoogle Scholar
Faenov, A.YA., Magunov, A.I., Pikuz, T.A., Skobelev, I.YU., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., Silvestri, S. de., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.Google Scholar
Gibbon, P., Monot, P., Auguste, T. & Mainfray, G. (1995). Measurable signatures of relativistic self-focusing in underdense plasmas. Phys. Plasmas 2, 1305.Google Scholar
Hora, H., Hoelss, M., Scheid, W.,Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.Google Scholar
Huillier, A.L., Descamps, D., Johansson, A., Norin, J., Mauritsson, J. & Wahlstom, C.G. (2003). Applications of high-order harmonics. Euro. Phys. J. D 26, 9198.CrossRefGoogle Scholar
Lam, J.F., Lippmann, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids 20, 11761179.Google Scholar
Kant, N. & Sharma, A.K. (2004). Resonant second-harmonic generation of a short pulse laser in a plasma channel. J. Phys. D 37, 2395.Google Scholar
Kant, N., Gupta, D.N. & Suk, H. (2011). Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition. Phys. Lett. A 375, 31343137.CrossRefGoogle Scholar
Kant, N., Gupta, D.N. & Suk, H. (2012). Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas. Phys. Plasmas 19, 013101.Google Scholar
Malka, V., Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Danson, C., Neely, D. & Walsh, F.N. (1997). Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas. Phys. Plasmas 4, 11271131.Google Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (2002). Electron acceleration from the breaking of relativistic plasma waves. Nat. 377, 606608.Google Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis-Jacquet, M., Malka, G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.Google Scholar
Nakatsutsumi, M., Davies, J.R., Kodama, R., Green, J.S., Lancaster, K.L., Akli, K.U., Beg, F.N., Chen, S.N., Clark, D., Freeman, R.R., Gregory, C.D., Habara, H., Heathcote, R., Hey, D.S., Highbarger, K., Jaanimagi, P., Key, M.H., Krushelnick, K., Ma, T., MacPhee, A., MacKinnon, A.J., Nakamura, H., Stephens, R.B., Storm, M.M., Tampo, Theobald, W., Woerkom, L.V., Weber, R.L., Wei, M.S., Woolsey, N.C. & Norreys, P.A. (2008). Space and time resolved measurements of the heating of solids to ten million Kelvin by a petawatt laser. New J. Phys. 10, 043046.Google Scholar
Patel, P.K., Key, M.H., Mackinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Maren, R.V., Wilks, S.C. & Zhang, B. (2005). Integrated laser target interaction experiments on the RAL petawatt laser. Plasma Phys. Cont. Fusion 47, B833.Google Scholar
Parashar, J. & Pandey, H.D. (1992). Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma. Sci. 20, 996.Google Scholar
Rajput, J., Kant, N., Singh, H. & Nanda, V. (2009). Resonant third harmonic generation of a short pulse laser in plasma by applying a wiggler magnetic field. Opt. Comm. 282, 46144617.CrossRefGoogle Scholar
Rax, J.M. & Fisch, N.J. (1992). Third-harmonic generation with ultrahigh-intensity laser pulses. Phys. Rev. Lett. 69, 772775.Google Scholar
Seifter, A., Kyrala, G.A., Goldman, S.R., Hoffman, N.M., Kline, J.L. & Batha, S.H. (2009). Demonstration of symcaps to measure implosion symmetry in the foot of the NIF scale 0.7 hohlraums. Laser Part. Beams 27, 123127.Google Scholar
Sharma, A. & Kourakis, I. (2010). Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479489.CrossRefGoogle Scholar
Singh, R., Sharma, A.K. & Tripathi, V.K. (2010). Relativistic self-distortion of a laser pulse and ponderomotive acceleration of electrons in an axially inhomogeneous plasma. Laser Part. Beams 28, 299305.Google Scholar
Singh, A. & Walia, K. (2010). Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma. Appl. Phys. B 101, 617622.Google Scholar
Singh, A. & Walia, K. (2011 a). Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energ. 30, 555560.Google Scholar
Singh, A. & Walia, K. (2011 b). Self-focusing of Gaussian laser beam in collisional plasma and its effect on second harmonic generation. Laser Part. Beams 29, 407414.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics. Amsterdam: North Holland, Amsterdam, 13, 169265.Google Scholar
Sodha, M.S., Sharma, J.K., Tewari, D.P., Sharma, R.P. & Kaushik, S.C. (1978). Plasma wave and second harmonic generation. Plasma Phys. 20, 825.Google Scholar
Stamper, J.A., Lehmberg, R.H., Schmitt, A., Herbst, M.J., Young, F.C., Gardner, J.H. & Obenshain, S.P. (1985). Evidence in the second-harmonic emission for self-focusing of a laser pulse in a plasma. Phys. Fluids 28, 25632569.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Teubner, U. & Gibbon, P. (2009). High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445479.Google Scholar
Ting, A., Krushelnick, K., Burris, H.R., Fisher, A., Manka, C. & Moore, C.I. (1996). Backscattered super-continuum emission from high-intensity laser plasma interactions. Opt. Lett. 21, 10961098.Google Scholar
Wilks, S.C., Dawson, J.M., Mori, W.B., Katsouleas, T. & Jones, M.E. (1989). Photon accelerator. Phys. Rev. Lett. 62, 26002603.Google Scholar