Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T17:07:52.092Z Has data issue: false hasContentIssue false

High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator

Published online by Cambridge University Press:  08 June 2006

KEI SAKAI
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
SHUJI MIYAZAKI
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
SHIGEO KAWATA
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
SHOTARO HASUMI
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
TAKASHI KIKUCHI
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan

Abstract

An attosecond electron beam generation is studied by an intense short-pulse TEM (1,0) + TEM (0,1)-mode laser with a plasma separator in vacuum. The TEM (1,0) + TEM (0,1)-mode laser has a ring-shaped intensity peak in the radial direction. Electrons are accelerated and compressed near the focus point of the TEM (1,0) + TEM (0,1)-mode laser. However, after the focus point, some electrons move to its deceleration phase of the laser pulse and are decelerated. As a result, a longitudinal velocity deference of electrons generated causes a density lowering. In order to suppress the deceleration and the density lowering, we set an overdense plasma-foil separator before the electrons move to the deceleration phase of the laser pulse. Since only the laser is reflected by the plasma separator, the electrons do not experience the deceleration phase and the density of the electron bunch is kept high after passing through the plasma separator. Consequently, a high-density electron beam is generated and at the same time, the pulse length of the electron bunch becomes sub-femto second.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cao, N., Ho, Y.K., Kong, Q., Wang, P.X., Yuan, X.O., Nishida, Y., Yugami, N. & Ito, H. (2002). Accurate description of Gaussian laser beams and electron dynamics. Opt. Commun. 204, 715.CrossRefGoogle Scholar
Davis, L.W. (1979). Theory of electromagnetic beams. Phys. Rev. A. 19, 11771179.CrossRefGoogle Scholar
Esarey, E., Sprangle, P. & Krall, J. (1995). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 5443.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S. & Mercier, B. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.Google Scholar
Kawata, S., Maruyama, T., Watanabe, H. & Takahashi, I. (1991). Inverse-Bremsstrahlung electron acceleration. Phys. Rev. Lett. 66, 20722075.CrossRefGoogle Scholar
Kong, Q., Ho, Y.K., Wang, J.X., Wang, P.X., Feng, L. & Yuan, Z.S. (2000). Conditions for electron capture by an ultraintense stationary laser beam. Phys. Rev. E 61, 19811984.Google Scholar
Kong, Q., Miyazaki, S., Kawata, S., Miyanaga, K., Nakajima, K., Masuda, S., Miyanaga, N. & Ho, Y.K. (2003). Electron bunch acceleration and trapping by the ponderomotive force of an intense short-pulse laser. Phys. Plasmas 10, 46054678.CrossRefGoogle Scholar
Naumova, N., Sokolov, L., Maksimchuk, A. Yanovsky, V., &Mourou, G. (2004). Attosecond Electron Bunches. Phys. Rev. Lett. 93, 195003195007.CrossRefGoogle Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.CrossRefGoogle Scholar
Masuda, S., Kando, M., Kotaki, H. & Nakajima, K. (2005). Suppression of electron scattering by the longitudinal components of tightly focused laser fields. Phys. Plasmas 12, 1310213107.CrossRefGoogle Scholar
Miyamoto, K. (1989). Plasma Physics for Nuclear Fusion. Cambridge, MA: Massachusetts Institute of Technology.
Miyauchi, K., Miyazaki, S., Sakai, K. & Kawata, S. (2004). Laser electron acceleration by a plasma separator. Phys. Plasmas 11, 48784881.CrossRefGoogle Scholar
Miyazaki, S., Kawata, S., Kong, Q., Miyauchi, K., Sakai, K., Hasumi, S., Sonobe, S. & Kikuchi, T. (2005). Generation of a microelectron beam by an intense short pulse laser in the TEM (1,0) + TEM (0,1) mod in vacuum. J. Phys. D 38, 16651673.CrossRefGoogle Scholar
Mourou, G., Barty, C.P.J. & Perry, M.D. (1998). Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Phys. Today 51, 2228.CrossRefGoogle Scholar
Okada, T. & Niu, K. (1980). Effect of collisions on the relativistic electromagnetic instability. J. Plasma Phys. 24, 483488.CrossRefGoogle Scholar
Pommiers, L. & Lefebvre, E. (2003). Simulation of energetic proton emission in laser-plasma interaction. Laser Part. Beams 21, 573581.Google Scholar
Rosenbluth, M.N., Sagdeev, R.Z., Galeev, A.A., and Sudan, R.N. (1983). Hand Book of Plasma Physics. Volume 1: Basic Plasma Physics 1. Amsterdam: North-Holland.
Sakai, K., Miyauchi, K., Miyazaki, S., Kong, Q., Kikuchi, T. & Kawata, S. (2005). Electron bunch acceleration by an intense laser pulse with a plasma separator. IEEJ Trans. FM 125, 247253.CrossRefGoogle Scholar
Sakami, H. & Mima, K. (2004). Interconnection between hydro and PIC codes for fast ignition simulations. Laser Part. Beams 22, 4144.Google Scholar
Scully, M.O. & Zubairy, J.M. (1991). Simple laser accelerator optics and particle dynamics. Phys. Rev. A 44, 26562663.CrossRefGoogle Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short pulse laser. Laser Part. Beams 22, 175183.CrossRefGoogle Scholar
Steinhauer, L.C. & Kimurai, W.D. (1992). A new approach for laser particle acceleration in vacuum. J. Appl. Phys. 72, 32373245.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Stupakov, G.V. & Zolotorev, M.S. (2000). Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches. Phys. Rev. Lett. 86, 52745277.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Vshivkov, V., Naumova, N., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulse with a thin foil. Nucl. Instrum. Methods Phys. Res. A 410, 493498.CrossRefGoogle Scholar
Yu, W., Bychenko, V. Sentoku, Y., Yu, M.Y., Sheng, Z.M., &Mima, K. (2000). Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett. 85, 570573.CrossRefGoogle Scholar