Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T04:31:11.304Z Has data issue: false hasContentIssue false

Heavy-ion beam focusing with a wall-stabilized plasma lens

Published online by Cambridge University Press:  09 March 2009

A. Tauschwitz
Affiliation:
Max-Planck-Institut für Quantenoptik(MPQ), 85740 Garching, Germany
E. Boggasch
Affiliation:
Max-Planck-Institut für Quantenoptik(MPQ), 85740 Garching, Germany
D.H.H. Hoffmann
Affiliation:
Gesellschaft für Schwerionenforschung (GSI), 64220 Darmstadt, Germany
J. Jacoby
Affiliation:
Gesellschaft für Schwerionenforschung (GSI), 64220 Darmstadt, Germany
U. Neuner
Affiliation:
Physikalisches Institut, Universität Erlangen, 91058 Erlangen, German
M. Stetter
Affiliation:
Physikalisches Institut, Universität Erlangen, 91058 Erlangen, German
S. Stöwe
Affiliation:
Physikalisches Institut, Universität Erlangen, 91058 Erlangen, German
R. Tkotz
Affiliation:
Physikalisches Institut, Universität Erlangen, 91058 Erlangen, German
M. De Magistris
Affiliation:
Dipartimento di Ingegneria Elettrica, Universita di Napoli, 80125 Napoli, Italy
W. Seelig
Affiliation:
Institut für Angewandte Physik, Technische Hochschule Darmstadt, 64289 Darmstadt, Germany

Abstract

Focusing of heavy-ion beams is an important issue for ion beam-driven inertial confinement fusion. For the experimental program to investigate matter at high energy densities at GSI, the application of a plasma lens has attractive features compared to standard quadrupole lenses. A plasma lens using a wall-stabilized discharge has been systematically investigated and optimized for this purpose. Different lenses were tested in several runs at the GSI linear accelerator UNILAC and at the SIS-synchrotron. A remarkably high accuracy and reproducibility of the focusing were found. The focal spot size was mainly limited by the beam emittance. A summary of experimental results and important limitations of the focal spot size is given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boggasch, E. et al. 1991 Appl. Phys. Lett. 60, 2475.CrossRefGoogle Scholar
Heimrich, B. et al. 1990 Nucl. Instr. Meth. A 294, 602.CrossRefGoogle Scholar
Jackson, J.D. 1962 Classical Electrodynamics (Wiley, New York).Google Scholar
Lawson, J.D. 1988 Physics of Charged Particle Beams (Clarendon, Oxford).Google Scholar
Mankowsky, A. et al. 1984 Nuclear Fusion 24, 827.CrossRefGoogle Scholar
Olsen, J.N. et al. 1982 J. Appl. Phys. 53, 3397.CrossRefGoogle Scholar
Sandel, F.L. et al. 1981 Proc. Int. Conf. on High-Power Electron and Ion Beams, Palaiseau, 129.Google Scholar
Scherzer, O. 1947 Optik 2, 114.Google Scholar
Sigmund, P. et al. 1974 Nucl. Instr. Meth. 119, 541.CrossRefGoogle Scholar
Stetter, M. et al. 1994 Il Nuovo Cimento 106 A, 1725.Google Scholar
Tauschwitz, A. et al. 1992 Proc. Europ. Part. Accel. Conf., Berlin, 1650.Google Scholar
Tauschwitz, A. 1993 Dissertation, Technische Hochschule Darmstadt, Germany and GSI-Report 93–31.Google Scholar
Watrous, J. et al. 1990 Phys. Fluids B 2, 378.CrossRefGoogle Scholar