Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T01:50:05.183Z Has data issue: false hasContentIssue false

Growth rate of modulation instability of a laser pulse propagating in clustered gas

Published online by Cambridge University Press:  29 May 2013

Rohit K. Mishra*
Affiliation:
Department of Physics, University of Lucknow, Lucknow, India
Pallavi Jha
Affiliation:
Department of Physics, University of Lucknow, Lucknow, India
*
Address correspondence and reprint requests to: Rohit K. Mishra, Department of Physics, University of Lucknow, Lucknow 226007, India. E-mail: [email protected]

Abstract

This paper deals with the analysis of growth rate of modulation instability of a laser pulse propagating in a clustered gas. Finite pulse effects are considered to be a perturbation. Growth rates of modulation instability for 100 fs and 80 fs at the centroid as well as at the front and back of the pulses are evaluated and graphically analyzed. It has been shown that with decrease in pulse duration the growth rate of modulation instability increases at the front, back as well as at the centroid of the pulse. It is also shown that the change in growth rate of modulation instability at the front as well as at the back of the pulse in comparison to the centroid of the pulse for 80 fs pulse is less in comparison to that of 100 fs pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, G.P. (2006). Nonlinear Fiber Optics. San Diego, CA: Academic.Google Scholar
Alexeev, I., Antonsen, T.M., Kim, K.Y. & Milchberg, H.M. (2003). Self-focusing of intense laser pulses in a clustered gas. Phys. Rev. Lett. 90, 103402/1–4.CrossRefGoogle Scholar
Antonsen, T.M. Jr. & Mora, P. (1993). Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Fluids B 5, 14401452.CrossRefGoogle Scholar
Boggio, J.M.C., Tenebaum, S. & Fragnito, H.L. (2001). Amplification of broadband noise pumped by two lasers in optical fibers. J. Opt. Soc. Am. B 18, 14281435.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.M., Schiavi, A., Willi, O., Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Snavely, R.D., Patel, P., Hatchett, S., Key, M. & Hazarov, W. (2002). Propagation issues and energetic particle production in laser plasma interactions at intensities exceeding 1019 W/cm2. Laser Part. Beams 20, 3138.CrossRefGoogle Scholar
Borisov, A.B., Longworth, J.W., McPherson, A., Boyer, K. & Rhodes, C.K. (1996). Dynamical orbital collapse drivers super X-ray emission. J. Phys. B: At. Mol. Opt. Phys. 29, 247255.CrossRefGoogle Scholar
Clark, D.S. & Fisch, N.J. (2005). Raman laser amplification in preformed and ionizing plasmas. Laser Part. Beams 23, 101106.CrossRefGoogle Scholar
Ditmire, T., Donnelly, T., Rubenchik, A.M., Falcone, R.W. & Perry, M.D. (1996). Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 33793402.CrossRefGoogle ScholarPubMed
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser heated deuterium clusters, Nat. 398, 489492.CrossRefGoogle Scholar
Donnelly, T. D., Ditmire, T., Neuman, K., Perry, M.D. & Falcone, R.W. (1996). High order harmonic generation in atom clusters. Phys. Rev. Lett. 76, 24722475.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma based accelerator concepts. IEEE Trans. Plasma Sc. 24, 252288.CrossRefGoogle Scholar
Gill, T. S., Mahajan, R. & Kaur, R. (2010). Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel. Laser Part. Beams 28, 1120.CrossRefGoogle Scholar
Guerin, S., Mora, P. & Laval, G. (1998). Parametric instabilities due to relativistic electron mass variation. Phys. Plasmas 2, 2807.Google Scholar
Gupta, A., Antonsen, T.M. Jr. & Milchberg, H.M. (2004). Propagation of intense short laser pulses in a gas of atomic clusters. Phys. Rev. E 70, 046410/1–12.CrossRefGoogle Scholar
Hagena, O.F. & Obert, W. (1972). Cluster formation in expanding supersonic jets: effects of pressure, temperature, nozzel size and test gas. J. Chem. Phys. 56, 17931802CrossRefGoogle Scholar
Jha, P., Kumar, P., Raj, G. & Upadhyaya, A.K. (2005). Modulation instability of laser pulses in magnetized plasma. Phys. Plasmas 12, 123104/1–6.CrossRefGoogle Scholar
Jha, P., Singh, R.G. & Upadhyay, A.K. (2009). Pulse distortion and modulation instability in laser plasma interaction. Phys. Plasmas 16, 013107/1–5.CrossRefGoogle Scholar
Kirz, J., Jakobsen, C. & Howells, M. (1995). Soft X-ray microscopes and there biological applications. Quar. Rev. Biophys. 28, 33130.CrossRefGoogle ScholarPubMed
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Harelin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., YIN, L., Albright, B.J., Rose, H.A. & Amiranioff, F. (2009). Investigation of stimulated Raman scattering using a short pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185190.CrossRefGoogle Scholar
Kubiac, G.D., Bernardez, L.J., Krenz, K.D., Connell, D.J.O., Gutowski, R. & Todd, M.M. (1996). Debris-free EUVL sources based on gas jets. OSA Trends Opt. Photon. Ser. 4, 6671.Google Scholar
Kumarappan, V., Krishnamurthy, M. & Mathur, D. (2001). Asymmetric high-energy ion emission from argon clusters in intense laser fields. Physi. Rev. Lett. 87, 085005/1–4.CrossRefGoogle ScholarPubMed
Liu, S.Q., Tang, W. & Li, X.Q. (2011). Modulation instability of an intense laser beam in an unmagnetized plasma. J. Korean Phys. Soc. 59, 27272733.CrossRefGoogle Scholar
Martijn de Stereke, C. (1998). Theory of modulation instability in fiber Bragg gratting. J. Opt. Soc. Am. B 15, 26602667.CrossRefGoogle Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.CrossRefGoogle Scholar
Mckinstrie, C.J. & Bingham, R. (1992). Stimulated Raman forward scattering and the relativistic modulational instability of light waves in rarefied plasma. Phys. Fluids B 4, 26262633.CrossRefGoogle Scholar
Mishra, R. K. & Jha, P. (2011 a). Effect of chirping on the intensity profile and growth rate of modulation instability of a laser pulse propagating in plasma. Laser Part. Beams 29, 259263.CrossRefGoogle Scholar
Mishra, R.K. & Jha, P. (2011 b). Effect of Coulombic expansion on the evolution characteristics of short laser pulses propagating in clustered gas. Phys. Plasmas 18, 083111/1–5.CrossRefGoogle Scholar
Mori, W.B. (1997). The physics of nonlinear optics of plasmas at relativistics intensities for short-pulse lasers. IEEE J. Quantum Elect. 33, 19421953.CrossRefGoogle Scholar
Phillips, C.R. & Fezer, M.M. (2010). Stability of the singly resonant optical parametric oscillator. J. Opt. Soc. Am. B 27, 26872699.CrossRefGoogle Scholar
Raja, R.V.J., Porsezian, K. & Nithyanandan, K. (2010). Modulational-instability-induced super-continuum generation with saturable nonlinear response. Phys. Rev. A 82, 013825/1–6.CrossRefGoogle Scholar
Sarma, A.K. & Saha, M. (2011). Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium. J. Opt. Sc. Am. B. 28, 944948.CrossRefGoogle Scholar
Sarma, A.K. & Kumar, P. (2012). Modulation instability of ultra short pulses in quadratic nonlinear media beyond the slowly varying envelop approximation. Appl. Phys. B 106, 289.CrossRefGoogle Scholar
Sarma, A.K. (2010). Modulation instability of a few-cycle pulses in optical fibers. Euro Phys. Lett. 92, 24004/1–4.CrossRefGoogle Scholar
Shao, Y.L., Ditmire, T., Tisch, J.W.G., Sprigate, E., Marangos, J.P. & Hutchinson, M.H.R. (1996). Multi keV electron generation in the interaction of intense laser pulses with Xe-clusters. Phys. Rev. Lett. 77, 33433346.CrossRefGoogle ScholarPubMed
Sprangle, P., Esarey, E. & Hafizi, B. (1997). Intense laser pulse propagation and stability in partially stripped plasmas. Phys. Rev. Lett. 79, 10461049.CrossRefGoogle Scholar
Sprangle, P., Hafizi, B. & Penano, J.R. (2000). Laser pulse modulation instabilities in plasma channel. Phys. Rev. E 61, 43814393.CrossRefGoogle Scholar
Strikland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Sudo, S., Itoh, H., Okamoto, K. & Kubodera, K. (1989). Generation of 5 THz repetition optical pulses by modulation instability in optical fibers. Appl. Phys. Lett. 54, 993994.CrossRefGoogle Scholar
Taguchi, T., Antonsen, T.M. Jr., Palastro, J., Milchberg, H. & Mima, K. (2010). Particle in cell analysis of a laser cluster interaction including collision and ionization processes. Opt. Expr. 18, 23892405.CrossRefGoogle ScholarPubMed
Zhang, L., Fu, X., Deng, J., Zhang, J., Wen, S. & Fan, D. (2011). Role of chirp in spatiotemporal modulation instability of broadband pulsed laser. J. Opt. 13, 015230/1–7.CrossRefGoogle Scholar