Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T19:56:58.178Z Has data issue: false hasContentIssue false

Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction

Published online by Cambridge University Press:  07 June 2005

J. BADZIAK
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
S. GŁOWACZ
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
S. JABŁOŃSKI
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
P. PARYS
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. WOŁOWSKI
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
H. HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia

Abstract

The possibilities of producing ultrahigh-current-density ps ion fluxes by the skin-layer interaction of a short (≤ 1ps) laser pulse with plasma were studied using two-fluid hydrodynamic simulations, and the time-of-flight measurements. Backward-emitted ion fluxes from a massive (Au) target as well as forward-emitted fluxes from various thin foil targets irradiated by a 1-ps laser pulse of intensity up to 2 × 1017 W/cm2 were recorded. Both the simulations and the measurements confirmed that using the short-pulse skin-layer interaction of a laser pulse with a thin pre-plasma layer in front of a solid target, a high-density collimated ion flux of extremely high ion current density (∼ 1010 A/cm2 close to the target), can be generated at laser intensity only ∼ 1017 W/cm2. The ion current densities produced by this way were found to be comparable to (or even higher than) those estimated from recent short-pulse experiments using a target normal sheath acceleration mechanism at relativistic laser intensities. The effect of the target structure on the current densities and energies of forward-emitted ions is demonstrated.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Badziak, J., Chizhov, S.A., Kozlov, A.A., Makowski, J., Paduch, M., Tomaszewski, K., Vankov, A.B. & Yashin, V.E. (1997). Picosecond, terawatt, all-Nd:glass CPA laser system. Opt. Commun. 134, 495502.CrossRefGoogle Scholar
Badziak, J., Woryna, E., Parys, P., Platonov, K.Yu., Jabłoński, S., Ryć, L., Vankov, A.B. & Wołowski, J. (2001a). Fast proton generation from ultrashort laser pulse interaction with double-layer foil targets. Phys. Rev. Lett. 87, 215001-1215001-4.Google Scholar
Badziak, J., Makowski, J., Parys, P., Ryć, L., Wołowski, J., Woryna, E. & Vankov, A.B. (2001b). Intensity-dependent characteristics of a picosecond laser-produced Cu plasma. J. Phys. D: Appl. Phys. 34, 18851891.Google Scholar
Badziak, J., Hora, H., Woryna, E., Jabłoński, S., Laśka, L., Parys, P., Rohlena, K. & Wołowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser-plasma interactions. Phys. Lett. A 315, 452457.CrossRefGoogle Scholar
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2004). Production of ultrahigh-current-density ion beams by short-pulses skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.CrossRefGoogle Scholar
Boreham, B.W., Hora, H., Aydin, M., Eliezer, S., Goldsworthy, M.P., Min, Gu., Gahatak, A.K., Lalousis, P., Stening, R.J., Szichman, H., Luther-Davies, B., Baldwin, K.G.H., Maddever, R.A.M. & Rode, A.V. (1997). Beam smoothing and temporal effects: Optimized preparation of laser beams for direct-drive inertial confinement fusion. Laser Part. Beams 15, 277295.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Snavely, R.D., Patel, P., Hatchett, S., Key, M. & Nazarov, W. (2002). Propagation issues and energetic particle production in laser-plasma interactions at intensities exceeding 1019W/cm2. Laser Part. Beams 20, 3138.CrossRefGoogle Scholar
Clark, E.L. Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A., &Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.CrossRefGoogle Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Sage, G.P.Le., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-leGalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92 204801-1204801-4.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse laser interaction with thin foils. Phys. Rev. Lett. 89, 085002-1085002-4.Google Scholar
Hora, H. & Aydin, M. (1992). Suppression of stochastic pulsation in laser-plasma interaction by smoothing method. Phys. Rev. A 45, 61236125.CrossRefGoogle Scholar
Osman, F., Cang, Y., Hora, H., Cao, L.H., Liu, H., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J.& Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser Part. Beams 22, 8387.Google Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with and ultrafast proton beam. Phys. Rev. Lett. 91, 125004-1125004-4.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown,C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D., &Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 89, 436439.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 86, 17691772.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Zepf, M., Clark, E.L., Beg, F.N., Clarke, R.J., Dangor, A.E., Gopal, A., Krushelnick, K., Norreys, P.A., Tatarakis, M., Wagner, U. & Wei, M.S. (2003). Proton accelerations from high-intensity laser interactions with thin foil targets. Phys. Rev. Lett. 90, 064801-1064801-4.Google Scholar