Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:31:46.820Z Has data issue: false hasContentIssue false

Generation of high-energy ion bunches via laser-induced cavity pressure acceleration at ultra-high laser intensities

Published online by Cambridge University Press:  28 January 2014

S. Jabłoński*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Badziak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
P. Rączka
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
*
Address correspondence and reprint requests to: Sławomir Jabłoński, Institute of Plasma Physics and Laser Microfusion, 23 Hery Street, 01-497 Warsaw, Poland. E-mail: [email protected]

Abstract

In this paper, a new method for efficient generation of high-energy ion bunches via laser-induced cavity pressure acceleration (LICPA) is examined using one-dimensional particle-in-cell code PIC1D. It is found that for high laser beam intensities of the order of 1022 W/cm2 and for circular light polarization, a substantial increase in parameters of the accelerated ions is obtained when the target is placed inside a special cavity, into which the laser beam is introduced by a small hole. As compared to the pure radiation pressure acceleration scheme, the LICPA scheme leads to an increase in ion energies and the laser-to-ions energy conversion efficiency while the width of the ion energy spectrum are similar for both the schemes. Such a tendency was observed for all carbon targets (from 2 µm to 0.2 µm thick) investigated in the paper. The results of PIC1D simulations agree very well with predictions of the suitably generalized light sail model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J. & Jabłoński, S. (2010). Ultraintense ion beams driven by a short-wavelength short-pulse laser. Phys. Plasmas 17, 073106.CrossRefGoogle Scholar
Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev. 15, 1.CrossRefGoogle Scholar
Badziak, J., Borodziuk, S., Pisarczyk, T., Chodukowski, T., Krousky, E., Masek, K., Skala, J., Ullschmied, J. & Rhee, Y.-J. (2010). Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure. Appl. Phys. Lett. 96, 251502.CrossRefGoogle Scholar
Badziak, J., Jabłoński, S. & Rączka, P. (2012). Highly efficient generation of ultraintense high-energy ion beams using laser-induced cavity pressure acceleration. Appl. Phys. Lett. 101, 084102.CrossRefGoogle Scholar
Badziak, J., Jabłoński, S. & Wołowski, J. (2007). Progress and prospect of fast ignition of ICF targets. Plasma Phys. Contr. Fusion 49, B651B666.CrossRefGoogle Scholar
Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J. & Mancic, A. (2008). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 104, 063310.CrossRefGoogle Scholar
Badziak, J., Jabłoński, S., Pisarczyk, T., Rączka, P., Krousky, E., Liska, R., Kucharik, M., Chodukowski, T., Kalinowska, Z., Parys, P., Rosiński, M., Borodziuk, S. & Ullschmied, J. (2012). Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas 19, 053105.CrossRefGoogle Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T. Zh., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240247.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Fernandez, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Cort Gautier, D., Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004.CrossRefGoogle Scholar
Ledingham, K.W.D. & Galster, W. (2010). Laser-driven particle and photon beams and some applications. New J. Phys. 12, 045005.CrossRefGoogle Scholar
Lichters, R., Pfund, R.E.W. & Meyer-ter-Vehn, J. (1997). LPIC + +: A parallel one-dimensional relativistic electromagnetic particle-in-cell-code for simulating laser-plasma-interactions. Report No. MPQ 225, Max-Planck Institut fur Quantenoptik Garching Germany.Google Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Contr. Fusion 50, 124033.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornalti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Macchi, A., Veghini, S. & Pegoraro, F. (2009). “Light Sail” Acceleration Reexamined. Phys. Rev. Lett. 103, 085003.CrossRefGoogle ScholarPubMed
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Jung, D., Shah, R.C., Palaniyappan, S., Bowers, K.J., Henig, A., Fernandez, J.C. & Hegelich, B.M. (2011). Break-out afterburner ion acceleration in the longer laser length regime. Phys. Plasmas 18, 063103.CrossRefGoogle Scholar