Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T03:43:34.723Z Has data issue: false hasContentIssue false

Generating high-yield positrons and relativistic collisionless shocks by 10 PW laser

Published online by Cambridge University Press:  06 March 2017

J. Jiao
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
B. Zhang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
J. Yu
Affiliation:
Blackett Laboratory, The John Adams Institute for Accelerator Science, Imperial College, London, UK
Z. Zhang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
Y. Yan
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
S. He
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
Z. Deng
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
J. Teng
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
W. Hong
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China
Y. Gu*
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, Mianyang, Sichuan, China Academy of Engineering Physics, Mianyang, Sichuan, China IFSA Collaborative innovation center, Shanghai Jiao Tong University, Shanghai, China HEDPS, Center for Applied Physics and Technology, Peking University, Beijing, China
*
Address correspondence and reprint requests to: E-mail: [email protected]

Abstract

Relativistic collisionless shock charged particle acceleration is considered as a possible origin of high-energy cosmic rays. However, it is hard to explore the nature of relativistic collisionless shock due to its low occurring frequency and remote detecting distance. Recently, there are some works attempt to solve this problem by generating relativistic collisionless shock in laboratory conditions. In laboratory, the scheme of generation of relativistic collisionless shock is that two electron–positron pair plasmas knock each other. However, in laboratory, the appropriate pair plasmas have been not generated. The 10 PW laser pulse maybe generates the pair plasmas that satisfy the formation condition of relativistic collisionless shock due to its ultrahigh intensity and energy. In this paper, we study the positron production by ultraintense laser high Z target interaction using numerical simulations, which consider quantum electrodynamics effect. The simulation results show that the forward positron beam up to 1013/kJ can be generated by 10 PW laser pulse interacting with lead target. The estimation of relativistic collisionless shock formation shows that the positron yield satisfies formation condition and the positron divergence needs to be controlled. Our results indicate that the generation of relativistic collisionless shock by 10 PW laser facilities in laboratory is possible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arber, T.D., Bennett, K., Brady, C.S., Lawrence-Douglas, A., Ramsay, M.G., Sircombe, N.J., Gillies, P., Evans, R.G., Schmitz, H., Bell, A.R. & Ridgers, C.P. (2015). Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57, 113001.Google Scholar
Attwood, D.T., Sweeney, D.W., Auerbach, J.M. & Lee, P.H.Y. (1978). Interferometric confirmation of radiation–pressure effects in laser–plasma interactions. Phys. Rev. Lett. 40, 184.Google Scholar
Battistoni, G., Muraro, S., Sala, P.R., Cerutti, F., Ferrari, A., Roesler, S., Fasso, A. & Ranft, J. (2007). The FLUKA code: Description and bench-marking. AIP Conf. Proc. 896, 3149.CrossRefGoogle Scholar
Brady, C.S., Ridgers, C.P., Arber, T.D. & Bell, A.R. (2014). Synchrotron radiation, pair production, and longitudinal electron motion during 10–100 PW laser solid interactions. Phys. Plasmas 21, 033108.CrossRefGoogle Scholar
Chen, H., Fuiza, F., Link, A., Hazi, A., Hill, M., Hoarty, D., James, S., Kerr, S., Meyerhofer, D.D., Myatt, J., Sentoku, Y. & Williams, G.J. (2015 a). Scaling the yield of laser-driven electron–positron jets to laboratory astrophysical applications. Phys. Rev. Lett. 114, 215001.Google Scholar
Chen, H., Link, A., Sentoku, Y., Audebert, P., Fuiza, F., Hazi, A., Heeter, R.F., Hill, M., Hobbs, L., Kemp, A.J., Kemp, G.E., Kerr, S., Meyerhofer, D.D., Myatt, J., Nagel, S.R., Park, J., Tommasini, R. & Williams, G.J. (2015 b). The scaling of electron and positron generation in intense laser–solid interactions. Phys. Plasmas 22, 056705.Google Scholar
Gahn, C., Tsakiris, G.D., Pretzler, G., Witte, K.J., Delfin, C., Wahlstrom, C.G. & Habs, D. (2000). Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77, 26622664.Google Scholar
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter. London: Imperial College Press.Google Scholar
Hernandez-Gomez, C., Blake, S.P., Chekhlov, O., Clarke, R.J., Dunne, A.M., Galimberti, M., Hancock, S., Heathcote, R., Holligan, P., Lyachev, A., Matousek, P., Musgrave, I.O., Neely, D., Norreys, P.A., Ross, I., Tang, Y., Winstone, T.B., Wyborn, B.E. & Collier, J. (2010). The Vulcan 10 PW project. J. Phys.: Conf. Ser. 244, 032006.Google Scholar
Hanus, V., Drska, L., D'Humieres, E. & Tikhonchuk, V. (2014). Numerical study of positron production with short-pulse high-intensity lasers. Laser Part. Beams 32, 171176.CrossRefGoogle Scholar
Ji, L.L., Pukhov, A., Kostyukov, I.Yu., Shen, B.F. & Akli, K. (2014 a). Radiation-reaction trapping of electrons in extreme laser fields. Phys. Rev. Lett. 112, 145003.Google Scholar
Ji, L.L., Pukhov, A., Nerush, E.N., Kostyukov, I.Yu., Shen, B.F. & Akli, K. (2014 b). Energy partition, γ γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser–plasma interaction. Phys. Plasmas 21, 023109.Google Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interactions. New York: Addison-Wesley.Google Scholar
Liang, E.P., Wilks, S.C. & Tabak, M. (1998). Pair production by ultraintense lasers. Phys. Rev. Lett. 81, 4887.Google Scholar
Meszaros, P. (2006). Gamma-ray bursts. Rep. Prog. Phys. 69, 2259.Google Scholar
Myatt, J., Delettrez, J.A., Maximov, A.V., Meyerhofer, D.D., Short, R.W., Stoeckl, C. & Storm, M. (2009). Optimizing electron–positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Phys. Rev. E 79, 066409.Google Scholar
Piran, T. (2005). The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.M. & Meyer-ter-Vehn, J. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.Google Scholar
Ramis, R., Schmalz, R. & Meyer-ter-Vehn, J. (1988). MULTI – a computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun. 49, 475505.Google Scholar
Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D., Robinson, A.P.L. & Bell, A.R. (2012). Dense electron-positron plasmas and ultraintense γ-rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.Google Scholar
Sarri, G., Dieckmann, M.E., Kourakis, I., Di Piazza, A., Reville, B., Keitel, C.H. & Zepf, M. (2015 a). Overview of laser-driven generation of electron-positron beams. J. Plasma Phys. 81, 455810401.Google Scholar
Sarri, G., Poder, K., Cole, J.M., Schumaker, W., Di Piazza, A., Reville, B., Dzelzainis, T., Doria, D. , Gizzi, L.A., Grittani, G., Kar, S., Keitel, C.H., Krushelnick, K., Kuschel, S., Mangles, S.P.D., Najmudin, Z., Shukla, N., Silva, L.O., Symes, D., Thomas, A.G.R., Vargas, M., Vieira, J. & Zepf, M. (2015 b). Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nat. Commun. 6, 6747.Google Scholar
Shen, B. & Meyer-ter-Vehn, J. (2001). Pair and γ-photon production from a thin foil confined by two laser pulse. Phys. Rev. E 65, 016405.Google Scholar
Spitkovsky, A. (2008). Particle acceleration in relativistic collisionless shocks: fermi process at last? Astrophys. J. 682, L5.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulse. Phys. Rev. Lett. 69, 1383.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.Google Scholar