Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T18:55:28.470Z Has data issue: false hasContentIssue false

Field structure and electron acceleration in a slit laser beam

Published online by Cambridge University Press:  25 January 2010

Y.J. Xie
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China Shanxi Key Laboratory of Photonics Technology for Information, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, China Northwest Institute of Nuclear Technology, Xi'anChina
W. Wang
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China Shanghai Institute of Laser Plasma, Shanghai, China
L. Zheng
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
X.P. Zhang
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
Q. Kong
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
Y.K. Ho
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
P.X. Wang*
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
*
Address correspondence and reprint requests to: P.X. Wang, Fudan University, Institute of Modern Physics, Han Dan Road 220, 200433 Shanghai, China. E-mail: [email protected]

Abstract

The electric field intensity distribution and the phase velocity distribution of a slit in laser beams with different parameters are analyzed. Using three-dimensional test particle simulation, the laser beam with a slit induced acceleration of electrons with different initial momenta is investigated. Contrary to anticipation, the maximum net energy gain is not monotone increasing as the incoming momentum increasing. Based on the field structure and analysis, we gave an explanation for this.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barton, J.P. & Alexander, D.R. (1989). Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam. J. Appl. Phys. 66, 28002802.CrossRefGoogle Scholar
Bessonov, E.G., Grobunkov, M.V., Ishkhanov, B.S., Kosatryukiv, P.V., Maslova, Ya., Yu., , Shvedunov, V.I., Tunking, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489496.CrossRefGoogle Scholar
Chen, Z., Ho, Y.K., Wang, P.X., Kong, Q., Xie, Y.J., Wang, W. & Xu, J.J. (2006). A formula on phase velocity of waves and application. Appl. Phys. Lett. 88, 121125.Google Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedoseevs, R., Naseri, N., Masson-Laborde, P.-E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams from 7-TW laser pulses in N2 and He gas targets. Laser Part. Beams 26, 147156.CrossRefGoogle Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.CrossRefGoogle Scholar
Kawata, S., Maruyama, T., Watanabe, H. & Takahashi, I. (1991). Inverse-Bremsstrahlung electron acceleration. Phys. Rev. Lett. 66, 20722075.CrossRefGoogle ScholarPubMed
Leemans, W.P., Nagler, B., Gonsalves, A.J., Ta Th, Cs., Nakamura, K., Geddes, E., Esarey, C.G.R., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 3314.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5160.CrossRefGoogle Scholar
Salamin, Y.I. (2006). Electron acceleration from rest in vacuum by an axicon Gaussian laser beam. Phys. Rev. A 73, 043402.CrossRefGoogle Scholar
Salamin, Y.I. & Keitel, C.H. (2002). Electron acceleration by a tightly focused laser beam. Phys. Rev. Lett. 88, 095005.CrossRefGoogle ScholarPubMed
Singh, K.P. (2005). Electron acceleration by a chirped short intense laser pulse in vacuum. Appl. Phys. Lett. 87, 254102.CrossRefGoogle Scholar
Stupakov, G.V. & Zolotorev, M.S. (2001). Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches. Phys. Rev. Lett. 86, 52745277.CrossRefGoogle ScholarPubMed
Tovar, A.A. (2001). Propagation of flat-topped multi-Gaussian laser beams. J. Opt. Soc. Am. A 18, 18971904.CrossRefGoogle ScholarPubMed
Varin, C., Piché, M. & Porras, M.A. (2005). Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space. Phys. Rev. E 71, 026603.CrossRefGoogle ScholarPubMed
Varró, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 26, 920.CrossRefGoogle Scholar
Wang, J.X., Ho, Y.K., Kong, Q., Zhu, L.J., Feng, L., Scheid, S. & Hora, H. (1998). Electron capture and violent acceleration by an extra-intense laser beam. Phys. Rev. E 58, 65756577.CrossRefGoogle Scholar
Wang, J.X., Scheid, W., Hoelss, M. & Ho, Y.K. (2001 a). Mechanism of electron violent acceleration by extra-intense lasers in vacuum. Phys. Lett. A 280, 121128.CrossRefGoogle Scholar
Wang, P.X., Ho, Y.K., Yuan, X.Q. et al. , (2001 b). Vacuum electron acceleration by an intense laser. Appl. Phys. Lett. 78, 22532255.CrossRefGoogle Scholar
Wang, P.X., Scheid, W. & Ho, Y.K. (2007). Electron capture acceleration channel in a slit laser beam. Appl. Phys. Lett. 90, 111113.CrossRefGoogle Scholar
Wurtele, J.S. (1994). Advanced accelerator concepts. Phys. Today 47, 3340.CrossRefGoogle Scholar