Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T12:53:57.285Z Has data issue: false hasContentIssue false

Feasibility of new laser fusion by intense laser field

Published online by Cambridge University Press:  23 March 2009

K. Imasaki*
Affiliation:
Institute for Laser Technology, Osaka, Japan
D. Li
Affiliation:
Institute for Laser Technology, Osaka, Japan
*
Address correspondence and reprint requests to: Kazuo Imasaki, Institute for Laser Technology, 2-6 Yamada-oka, Suita, Osaka, 565-0871, Japan. E-mail: [email protected].

Abstract

A feasibility of a new approach of laser fusion in plasma without implosion has been proposed and discussed using an intense laser. The cross-section of nuclear reaction is increased by the enhanced penetrability of nuclei through the Coulomb barrier. In this approach, an intense laser field of more than 10 EW was required to distort the Coulomb barrier to obtain enough penetrability. In the new improved model, a nuclear potential with meson attractive force is considered. Enhancement is observed for penetrability around EW or less power laser due to a nuclear potential. Energy gain even with Deuterium-Deuterium reaction can be obtained on this scheme in Deuterium plasma with energetic nucleon theoretically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balantekin, A. & Takigawa, N. (1998). Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77100.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Bourdier, A., Patin, D. & Lefebvre, E. (2007). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 25, 169180.CrossRefGoogle Scholar
Deutsch, C. & Tahir, N. (2006). Fusion reactions and matter-antimatter annihilation for space propulsion. Laser Part. Beams 24, 605616.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Nt, P., Rosmei, O.M., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beam. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Imasaki, K. & Li, D. (2007). An approach to hydrogen production by inertial fusion energy. Laser Part. Beams 25, 99105.CrossRefGoogle Scholar
Imasaki, K. & Li, D. (2008). An approach of laser induced nuclear fusion. Laser Part. Beams 26, 37.CrossRefGoogle Scholar
Kuehl, T.H., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, B., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & the PHELIX Team. (2007). Optimization of the non-thermal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for anti-proton and ion research (FAIR). Laser Part. Beams 25, 9397.CrossRefGoogle Scholar
Kumar, A., Gupta, M.K. & Sharma, R.R. (2006). Effect of ultra intense laser pulse on the propagation of electron plasma wave in relativistic and ponderomotive regime and particle acceleration. Laser Part. Beams 24, 403409.CrossRefGoogle Scholar
Li, D. & Imasaki, K. (2005). Vacuum laser-driven acceleration by a slit-truncated Bessel beam. Appl. Phys. Lett. 86, 031110.Google Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, RG., Fotiadi, A.A., Megret, P., Kalal, M., Slezak, O., Yoon, J.W., Shin, J.S., Beak, D.H., Lee, S.K., Lu, Z., Wang, S., Lin, D., Knight, J.C., Kotova, N.E., Straber, A., Scheikh-Obeid, A., Riesbeck, T., Meister, S., Eichler, H.J., Wang, Y., He, W., Yoshida, H., Fujita, H., Nakatsuka, M., Hatae, T., Park, H., Lim, C., Omatsu, T., Nawata, K., Shiba, N., Antipov, O.L., Kuznetsov, M.S., Zakharov, N.G., Patin, D., Lefebvre, E., Bourdier, A. & D'Humieres, E. (2006). Stochastic heating in ultra high intensity laser-plasma interaction: Theory and PIC code simulations. Laser Part. Beams 24, 223230.Google Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Sherlock, M., Bell, A.R. & Rozmus, W. (2006). Absorption of ultra-short laser pulses and particle transport in dense targets. Laser Part. Beams 24, 231234.CrossRefGoogle Scholar
Shimada, Y., Nisimura, H., Nakai, M. & Yamanaka, C. (2005). Characterization of extreme ultraviolet emission from laser produced spherical tin plasma generated with multiple laser beams. Appl. Phys. Lett. 86, 051501.CrossRefGoogle Scholar