Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T21:55:25.971Z Has data issue: false hasContentIssue false

Fast ignition integrated interconnecting code project for cone-guided targets

Published online by Cambridge University Press:  06 March 2006

H. SAKAGAMI
Affiliation:
Theory and Computer Simulation Center, National Institute for Fusion Science, Toki, Japan
T. JOHZAKI
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
H. NAGATOMO
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
K. MIMA
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan

Abstract

It was reported that the fuel core was heated up to ∼0.8 keV in the fast ignition experiments with cone-guided targets, but they could not theoretically explain heating mechanisms and achievement of such high temperature. Thus simulations should play an important role in estimating the scheme performance, and we must simulate each phenomenon with individual codes and integrate them under the fast ignition integrated interconnecting code project. In the previous integrated simulations, fast electrons generated by the laser-plasma interaction were too hot to efficiently heat the core and we got only 0.096 keV rise of temperature. Including the density gap at the contact surface between the cone tip and the imploded plasma, the period of core heating became longer and the core was heated by 0.162 keV, ∼ 69% higher increment compared with ignoring the density gap effect.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, A.R., Davies, J.R. & Guerin, S.M. (1998). Magnetic field in short-pulse high-intensity laser-solid experiments. Phys. Rev. E 58, 24712473.Google Scholar
Braams, B.J. & Karney, C.F.F. (1989). Conductivity of relativistic Plasma. Phys. Fluids B 1, 13551368.Google Scholar
Bret, A., Firpo, M.-C. & Deutcsh C. (2005). Characterization of the initial filamentation of a relativistic electron beam passing through plasma. Phys. Rev. Lett. 94, 115002.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.Google Scholar
Deutsch, C. (2003). Transport of megaelectron volt protons for fast ignition. Laser Part. Beams 21, 3335.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Gibbon, P. & Bell, A.R. (1992). Collisionless absorption in sharp-edged plasmas. Phys. Rev. Lett. 68, 15351538.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Johzaki, T., Mima, K., Nakao, Y., Yokota, T. & Sumita, H. (2003). Analysis of core plasma heating by relativistic electrons in fast ignition. Fusion Sci. Technol. 43, 428436.Google Scholar
Johzaki, T., Nagatomo, H., Mima, K., Sakagami, H. & Nakao, Y. (2004). Integrated simulations for fast ignition targets. J. Plasma Fusion Res. 6, 341344.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.Google Scholar
Kodama, R., Shiraga, H., Shigemori, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsuno, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Nuclear fusion: Fast heating scalable to laser fusion ignition. Nature 418, 933934.Google Scholar
Koshkarev, D.G. (2002). Heavy ion driver for fast ignition. Laser Part. Beams 20, 595597.Google Scholar
Mason, R.J. (1979). Monte Carlo (hybrid) suprathermal electron transport. Phys. Rev. Lett. 43, 17951798.Google Scholar
Mima, K., Tajima, T. & Leboeuf, J.N. (1978). Magnetic field generation by the Rayleigh-Taylor instability. Phys. Rev. Lett. 41, 17151719.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 512.Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.Google Scholar
Nagatomo, H., Ohnishi, N., Mima, K., Sawada, K., Nishihara, K. & Takabe, H. (2001). Analysis of Hydrodynamic Instabilities in Implosion using High-accuracy Integrated Implosion Code. In Proc. 2nd International Conference on Inertial Fusion Sciences and Applications. pp. 140142. Paris: Elsevier.
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Sakagami, H. & Mima, K. (2001). Fast ignition simulations with collective PIC code. Proc. 2nd International Conference on Inertial Fusion Sciences and Applications, Kyoto, Japan. pp. 380383. Paris: Elsevier.
Sakagami, H. & Mima, K. (2004). Interconnection between hydro and PIC codes for fast ignition simulations. Laser Part. Beams 22, 4144.Google Scholar
Sakaguchi, T., Sakagami, H., Nii, M. & Takahashi, Y. (2005). Implementation of application collaboration protocol. In Parallel and Distributed Computing: Applications and Technologies, LNCS 3320 (Liew, K., Shen, H. and See, S., Eds.), pp. 9093. Heidelberg: Springer-Verlag.
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 30833087.Google Scholar
Sentoku, Y., Mima, K., Kaw, P. & Nishikawa, K. (2003). Anomalous resistively resulting from MeV-electron transport in overdense plasma. Phys. Rev. Lett. 90, 155001.Google Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22, 175181.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Taguchi, T., Antonsen, T.M. Jr. & Mima, K. (2004). Study of hot electron beam transport in high density plasma using 3d hybrid-Darwin code. Comput. Phys. Commun. 164, 269278.Google Scholar
Yabe, T., Xiao, F. & Utsumi, T. (2001). Constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556593.Google Scholar
Yamanaka, C. (2002). The prospect of laser fusion in the 21st century. Laser Part. Beams 20, 365365.Google Scholar