Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T21:44:34.741Z Has data issue: false hasContentIssue false

Extending the capabilities of ablation harmonics to shorter wavelengths and higher intensity

Published online by Cambridge University Press:  16 June 2008

T. Ozaki*
Affiliation:
Institut national de la recherche scientifique, University of Québec, Varennes, Québec, Canada
L. Elouga Bom
Affiliation:
Institut national de la recherche scientifique, University of Québec, Varennes, Québec, Canada
R.A. Ganeev
Affiliation:
Institut national de la recherche scientifique, University of Québec, Varennes, Québec, Canada
*
Address correspondence and reprint requests to T. Ozaki, Institut national de la recherche scientifique, University of Québec, 1650 boul. Lionel-Boulet, Varennes, Québec J3X 1S2Canada. E-mail: [email protected]

Abstract

We study the generation of high-order harmonics from plasma plume, by using the 20 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on enhancement of single high-order harmonics generated in laser plasma using the fundamental and second harmonic of the ALLS beam line. Quasi-monochromatic harmonics are observed for Mn, Cr, Sb, Sn, and In plasmas. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. Intensity enhancements of the 13th, 17th, 21st, 29th, and 33rd harmonics from these targets are demonstrated using the 800 nm pump laser and varying its chirp. We also observed harmonic enhancement from some targets for 400 nm pump laser. Using Mn plume, we demonstrated the highest harmonic photon energy (52.9 eV) at which enhancement has been observed (17th order, λ = 23.5 nm).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartels, R, Backus, S., Zeek, E., Misoguti, L., Vdovin, G., Christov, I.P., Murnane, M.M. & Kapteyn, H.C. (2000). Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164166.Google Scholar
Cao, L.F., Uschmann, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Corkum, P.B. (1993). Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 19941997.CrossRefGoogle ScholarPubMed
Dolmatov, V.K. (1996). Characteristic features of the 3p absorption spectra of free iron-group elements due to the duplicity of the ‘inner-valence’ 3d electrons. Application to Mn2+. J. Phys. B 29, L687L692.CrossRefGoogle Scholar
Duffy, G., van Kampen, P. & Dunne, P. (2001). 4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III. J. Phys. B 34, 31713178.CrossRefGoogle Scholar
Fang, X. & Ahmad, S.R. (2007). Saturation effect at high laser pulse energies in laser-induced breakdown spectroscopy for elemental analysis in water. Laser Part. Beams 25, 613620.CrossRefGoogle Scholar
Figueira De Morisson Faria, C., Kopold, R., Becker, W. & Rost, J.M. (2002). Resonant enhancements of high-order harmonic generation. Phys. Rev. A 65, 023404.Google Scholar
Gaarde, M.B. & Schafer, K.J. (2001). Enhancement of many high-order harmonics via a single multiphoton resonance. Phys. Rev. A 64, 013820.CrossRefGoogle Scholar
Ganeev, R.A., Naik, P.A., Singhal, H., Chakera, J.A. & Gupta, P.D. (2007). Strong enhancement and extinction of single harmonic intensity in the mid- and end-plateau regions of the high harmonics generated in weakly excited laser plasmas. Opt. Lett. 32, 6567.CrossRefGoogle ScholarPubMed
Ganeev, R.A., Singhal, H., Naik, P.A., Arora, V., Chakravarty, U., Chakera, J.A., Khan, R.A., Redkin, P.V., Raghuramaiah, M. & Gupta, P.D. (2006c). Single-harmonic enhancement by controlling the chirp of the driving laser pulse during high-order harmonic generation from GaAs plasma. J. Opt. Soc. Am. B 23, 25352540.CrossRefGoogle Scholar
Ganeev, R.A., Singhal, H., Naik, P.A., Arora, V., Chakravarty, U., Chakera, J.A., Khan, R.A., Kulagin, I.A., Redkin, P.V., Raghuramaiah, M. & Gupta, P.D. (2006d). Harmonic generation from indium-rich plasmas. Phys. Rev. A 74, 063824.CrossRefGoogle Scholar
Ganeev, R.A., Suzuki, M., Baba, M. & Kuroda, H. (2006a). Analysis of nonlinear self-interaction of femtosecond pulses during high-order harmonic generation in laser-produced plasma. J. Opt. Soc. Am. B 23, 13321337.CrossRefGoogle Scholar
Ganeev, R.A., Suzuki, M., Baba, M., Kuroda, H. & Ozaki, T. (2005a). High-order harmonic generation from boron plasma in the extreme-ultraviolet range. Opt. Lett. 30, 768770.Google Scholar
Ganeev, R.A., Suzuki, M., Baba, M., Kuroda, H. & Ozaki, T. (2006b). Strong resonance enhancement of a single harmonic generated in the extreme ultraviolet range. Opt. Lett. 31, 16991701.CrossRefGoogle ScholarPubMed
Ganeev, R.A., Suzuki, M., Baba, M. & Kuroda, H. (2005b). Generation of strong coherent extreme ultraviolet radiation from the laser plasma produced on the surface of solid targets. Appl. Phys. B 81, 10811089.CrossRefGoogle Scholar
Kazamias, S., Douillet, D., Weihe, F., Valentin, C., Rousse, A., Sebban, S., Grillon, G., Augé, F., Hulin, D. & Balcou, Ph. (2003). Global optimization of high harmonic generation. Phys. Rev. Lett. 90, 193901.CrossRefGoogle ScholarPubMed
Kilbane, D., Kennedy, E.T., Mosnier, J.-P., van Kampen, P. & Costello, J.T. (2005). On the 3p-subshell photoabsorption spectra of iron-group ions: the case of Mn2+. J. Phys. B 38, L1L8.Google Scholar
Kim, H.T., Kim, I.J., Lee, D.G., Hong, K.H., Lee, Y.S., Tosa, V. & Nam, C.H. (2004). Optimization of high-order harmonic brightness in the space and time domains. Phys. Rev. A 69, 031805(R).Google Scholar
Nardi, E., Maron, Y. & Hoffmann, D.H.H. (2007). Plasma diagnostics by means of the scattering of electrons and proton beams. Laser Part. Beams 25, 489495.CrossRefGoogle Scholar
Orlov, N.Y., Gus'kov, S.Y., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser ParT. Beams 25, 415423.CrossRefGoogle Scholar
Ozaki, T., Elouga Bom, L.B., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Ozaki, T., Kieffer, J.C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101106.CrossRefGoogle Scholar
Pfeifer, T., Walter, D., Winterfeldt, C., Spielmann, C. & Gerber, G. (2005). Controlling the spectral shape of coherent soft X-rays. Appl. Phys. B 80, 277280.CrossRefGoogle Scholar
Reintjes, J.F. (1984). Nonlinear Optical Parametric Processes in Liquids and Gases Orlando, Fl: Academic Press.Google Scholar
Schade, W., Bohling, C., Hohmann, K. & Scheel, D. (2006). Laser-induced plasma spectroscopy for mine detection and verification. Laser Part. Beams 24, 241247.Google Scholar
Suzuki, M., Baba, M., Ganeev, R.A., Kuroda, H. & Ozaki, T. (2006). Anomalous enhancement of a single high-order harmonic by using a laser-ablation tin plume at 47 nm. Opt. Lett. 31, 33063308.Google Scholar
Taïeb, R., Véniard, V., Wassaf, J. & Maquet, A. (2003). Roles of resonances and recollisions in strong-field atomic phenomena. II. High-order harmonic generation. Phys. Rev. A 68, 033403.Google Scholar
Toma, E.S., Antoine, Ph., de Bohan, A. & Muller, H.G. (1999). Resonance-enhanced high-harmonic generation. J. Phys. B 32, 58435852.CrossRefGoogle Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Wang, Y.L., Xu, W., Zhou, Y., Chu, L.Z. & Fu, G.S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.Google Scholar
Zeng, Z., Li, R., Cheng, Y., Yu, W. & Xu, Z. (2002). Resonance-enhanced high-harmonic generation. Phys. Scripta 66, 321325.CrossRefGoogle Scholar