Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T20:23:47.932Z Has data issue: false hasContentIssue false

Exploding wire energy absorption dynamics at slow current rates

Published online by Cambridge University Press:  05 December 2016

G. Rodríguez Prieto*
Affiliation:
Universidad de Castilla-la Mancha, I.N.E.I., 13071, Ciudad Real, Spain
L. Bilbao
Affiliation:
Instituto de Física del Plasma, UBA-CONICET, 1428, Buenos Aires, Argentina
M. Milanese
Affiliation:
CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Física Arroyo Seco – Facultad de Ciencias Exactas 7000, Tandil, Argentina
*
Address correspondence and reprint requests to: G. Rodríguez Prieto, Universidad de Castilla-la Mancha, I.N.E.I., 13071, Ciudad Real, Spain. E-mail: [email protected]

Abstract

Absorption of electrical energy provided to a metal wire in an exploding wire system is thought to be terminated or greatly diminished when the plasma is formed, after the joule heating of the metallic wire by the electrical current. Accordingly, it is common to account for the electrical energy delivered to the wire that the integration of current and voltage signals is halted when the voltage peak changes its slope. Usually, this moment is synchronized with the plasma appearance, as detected by optical sensors. In this work, experimental evidence of a two-step electrical energy absorption in an exploding wire surrounded by atmospheric air is presented. During the first step of the energy absorption the plasma is not formed, indicating that the delivered energy is not enough for ionizing the wire, giving place to a dark pause that lasts until a second energy absorption produces a plasma. The delay between the two steps can reach ≈2.2 µs for copper wires of 50 µm diameter charged at an initial voltage of 10 kV. Experimental investigation of variation of the delay between the two steps with different metals, charging voltages, and wire diameters are presented. A relation of the current density with the initial kinetic energy of the plasma and the electrical current rate is devised as a possible explanation of the observed phenomena.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beilis, I.I., Baksht, R.B., Oreshkin, V.I., Russkikh, A.G., Chaikovskii, S.A., Yu Labetskii, A., Ratakhin, N.A. & Shishlov, A.V. (2008). Discharge phenomena associated with a preheated wire explosion in vacuum: Theory and comparison with experiment. Phys. Plasmas 15, 013501. doi: 10.1063/1.2826434.CrossRefGoogle Scholar
Beilis, I.I., Shashurin, A., Baksht, R.B. & Oreshkin, V. (2009). Density and temperature distributions in the plasma expanding from an exploded wire in vacuum. J. Appl. Phys. 105, 033301. URL http://scitation.aip.org/content/aip/journal/jap/105/3/10.1063/1.3050343.CrossRefGoogle Scholar
Bennett, F.D. (1958). Cylindrical shock waves from exploding wires. Phys. Fluids 1, 347352.CrossRefGoogle Scholar
Bennett, F.D., Hefferlin, R. & Strehlow, R.A. (1969). Progress in High Temperature Physics and Chemistry, Vol. II. High-Temperature Exploding Wires. London: Pergamon Press.Google Scholar
Bilbao, L. (2006). A three-dimensional finite volume arbitrary lagrangian-eulerian code for plasma simulations. AIP Conf. Proc. 875, 467472. URL http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2405990.CrossRefGoogle Scholar
Chandler, K.M., Hammer, D.A., Sinars, D.B., Pikuz, S.A. & Shelkovenko, T.A. (2002). The relationship between exploding wire expansion rates and wire material properties near the boiling temperature. IEEE Trans. Plasma Sci. 30, 577587.CrossRefGoogle Scholar
DeSilva, A.W. & Katsouros, J.D. (1998). Electrical conductivity of dense copper and aluminum plasmas. Phys. Rev. E 57, 59455951.CrossRefGoogle Scholar
Efimov, S., Fedotov, A., Gleizer, S., Gurovich, V.T.Z., Bazalitski, G. & Krasik, Y.E. (2008). Characterization of converging shock waves generated by underwater electrical wire array explosion. Phys. Plasmas 15, 112703.CrossRefGoogle Scholar
Gray, T. (2016). Photographic periodic table of the elements. http://periodictable.com Accessed on February 2016. URL http://periodictable.com.Google Scholar
Grinenko, A., Krasik, Y.E., Efimov, S., Fedotov, G. & Gurovich, V.T.Z. (2006). Nanosecond time scale, high power electrical wire explosion in water. Phys. Plasmas 13, 042701.CrossRefGoogle Scholar
Gurovich, V.T.S., Grinenko, A., Krasik, Y.E. & Felsteiner, J. (2004). Simplified model of underwater electrical discharge. Phys. Rev. E 69, 036402.CrossRefGoogle ScholarPubMed
Krasik, Y.E., Grinenko, A., Sayapin, A., Efimov, S., Fedotov, A., Gurovich, V.Z. & Oreshkin, V.I. (2008). Underwater electrical wire explosion and its applications. IEEE Trans. Plasma Sci. 3, 423434.CrossRefGoogle Scholar
Kuskova, N.I., Tkachenko, S.I. & Koval, S.V. (1997). Investigation of liquid metallic wire heating dynamics. J. Phys.: Condens. Matter 9, 61756184.Google Scholar
Liverts, M., Ram, O., Sadot, O., Apazidis, N. & Ben-Dor, G. (2015). Mitigation of exploding-wire-generated blast-waves by aqueous foam. Phys. Fluids 27, 076103.CrossRefGoogle Scholar
Nairne, E. (1780). An account of the effect of electricity in shortening wires. Philos. Trans. R. Soc. Lond. 70, 334337.Google Scholar
Pankratz, L.B. & Mrazek, R.V. (1983). Thermodynamic properties of elements and oxides. Bur. Mines Bull. 672, 1143.Google Scholar
Ram, O. & Sadot, O. (2012). Implementation of the exploding wire technique to study blast-wavestructure interaction. Exp. Fluids 53, 13351345.CrossRefGoogle Scholar
Rodríguez Prieto, G., Bilbao, L. & Milanese, M. (2016). Temporal distribution of the electrical energy on an exploding wire. Laser Part. Beams 34, 263269. URL http://journals.cambridge.org/articleS0263034616000069.CrossRefGoogle Scholar
Sarathi, R., Sindhu, T.K., Chakravarthy, S.R., Sharma, A. & Nagsesh, K.V. (2009). Generation and characterization of nano-tungsten particles formed by wire explosion process. J. Alloys Compd. 475, 658663.CrossRefGoogle Scholar
Sarkisov, G.S., Rosenthal, S.E., Cochrane, K.R., Struve, K.W., Deeney, C. & McDaniel, D.H. (2005 a). Nanosecond electrical explosion of thin aluminum wire in vacuum: Experimental and computational investigations. Phys. Rev. E 71, 046404.CrossRefGoogle ScholarPubMed
Sarkisov, G.S., Struve, K.W. & McDaniel, D.H. (2004). Effect of current rate on energy deposition into exploding metal wires in vacuum. Phys. Plasmas 11, 4573.CrossRefGoogle Scholar
Sarkisov, G.S., Struve, K.W. & McDaniel, D.H. (2005 b). Effect of deposited energy on the structure of an exploding tungsten wire core in a vacuum. Phys. Plasmas 12, 052072.CrossRefGoogle Scholar
Sasaki, T., Yano, Y., Nakajima, M., Kawamura, T. & Horioka, K. (2006). Warm-dense-matter studies using pulse-powered wire discharges in water. Laser Part. Beams 24, 371380.CrossRefGoogle Scholar
Sheftman, D. & Krasik, Y.E. (2010). Investigation of electrical conductivity and equations of state of non-ideal plasma through underwater electrical wire explosion. Phys. Plasmas 17, 112702.CrossRefGoogle Scholar
Stephens, J. & Neuber, A. (2012). Exploding-wire experiments and theory for metal conductivity evaluation in the sub-eV regime. Phys. Rev. E 86, 066409.CrossRefGoogle ScholarPubMed
Stephens, J.C., Neuber, A.A. & Kristiansen, M. (2012). Simulation of an exploding wire opening switch. 2012 14th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS), 14. doi: 10.1109/MEGAGAUSS.2012.6781418.Google Scholar