Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:04:30.225Z Has data issue: false hasContentIssue false

Experiments with laser-irradiated cylindrical targets

Published online by Cambridge University Press:  09 March 2009

C. Stöckl
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046, GarchingGermany
G. D. Tsakiris
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046, GarchingGermany

Abstract

Results of novel experiments with laser-heated capillary targets are presented. In these experiments the interior of gold capillaries having a 200- or 700-μm inner diameter and a 2–12-mm length was axially irradiated by injection of the laser energy through one of the end openings. A frequency-doubled Nd:glass laser (λ = 0.53 μm) was employed, delivering 8-J energy in 3 ns. The experiments showed no significant backreflection of laser light. Depending on the capillary diameter and length, most of the laser energy is either transmitted or absorbed inside the capillary. The transmission of laser light was measured as a function of capillary length and found to be in good agreement with the predictions of a simple theoretical model. Two extreme cases could be identified. Capillaries with a 700-μm diameter show uninhibited laser light propagation due to multireflections off the inner wall. In contrast, at the entrance of capillaries with a 200-μm inner diameter a plasma plug forms that absorbs most of the laser energy. In both cases significant energy transport was observed to occur in the axial direction. A stable and strongly radiating plasma column is formed along the capillary axis by the collision of the radially imploding plasma. During the collision, part of the hydrodynamic energy of the plasma is converted into radiative energy. In a special case-a lower limit of ≊7% could be inferred for the conversion efficiency from laser light into X-ray radiation emitted from the rear opening of the capillary.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balmer, J. E. et al. 1990a In Laser Interaction with Matter, Madrid, 1988, Velarde, G., ed. (World Scientific, Singapore), p. 292.Google Scholar
Balmer, J. E. et al. 1990b Laser Part. Beams 8, 327.Google Scholar
Cunningham, P. F. et al. 1988 Opt. Commun. 68, 412.CrossRefGoogle Scholar
Eidmann, K. & Kishimoto, T. 1986 Appl. Phys. Lett. 49, 377.CrossRefGoogle Scholar
Eidmann, K. et al. 1986 Laser Part. Beams 4, 521.Google Scholar
Eidmann, K. et al. 1987 In Proceedings of the 3rd International Conference on Radiative Properties of Hot Dense Matter III, Williamsburg, Virginia,Rozsnyai, B. et al. , eds. (World Scientific, Singapore), p. 136.Google Scholar
Godwin, R. P., Sachsenmaier, P. & Sigel, R. 1977 Phys. Rev. Lett. 39, 1198.Google Scholar
Hagemann, H. J., Gudat, W. & Kunz, C. 1974 Deutsches Elektronen-Synchrotron Report No. SR-74/7.Google Scholar
Henke, B. L. et al. 1982 At. Data Nucl. Data Tables 21, 1.Google Scholar
Kishimoto, T. 1985 Max-Planck-Institut für Quantenoptik Report No. MPQ-108; Dissertation, Ludwig-Maximilians-Universität München, 1985.Google Scholar
Kruer, W. L. 1986 Laser Plasma Interactions 3 (SUSSP Publications, Edinburgh).Google Scholar
Kruer, W. L. 1989 Laser Plasma Interactions 4 (SUSSP Publications, Edinburgh).Google Scholar
Lin, Z. et al. 1988a Opt. Commun. 65, 445.Google Scholar
Lin, Z. et al. 1988b Opt. Commun. 68, 418.Google Scholar
Maaswinkel, A. G. M., Eidmann, K. & Sigel, R. 1979 Phys. Rev. Lett. 42, 1625.CrossRefGoogle Scholar
Mallozzi, P. J. et al. 1974 J. Appl. Phys. 45, 1891.Google Scholar
Mosher, D. & Stephanakis, S. J. 1976 Appl. Phys. Lett. 29, 105.Google Scholar
Nishimura, H. et al. 1987 In Springer Proceedings in Physics, Vol.30,Yamanaka, C., ed. (Springer-Verlag, Berlin), p. 261.Google Scholar
Pakula, R. & Sigel, R. 1986 Z. Naturforsch. A 41, 463.CrossRefGoogle Scholar
Pantell, R. H. & Chung, P. S. 1978 IEEE J. Quantum Electron. QE-29, 694.Google Scholar
Post, D. E. et al. 1977 At. Data Nucl. Data Tables 20, 397.Google Scholar
Richardson, M. C. et al. 1986 Phys. Rev. A 33, 1246.CrossRefGoogle Scholar
Rocca, J. J., Beethe, D. C. & Marconi, M. C. 1988 Opt. Lett. 13, 565.CrossRefGoogle Scholar
Sakabe, S. et al. 1988 Phys. Rev. A 38, 5756.Google Scholar
Schwanda, W. 1988 Max-Planck-Institut für Quantenoptik Report No. MPQ-135.Google Scholar
Sigel, R. 1986 Europhys. News 17, 116.CrossRefGoogle Scholar
Sigel, R., Massen, J. & Tsakiris, G. D. 1989 In Inertial Confinement Fusion, Proceedings of the Course and Workshop of the International School of Plasma Physics P. Caldirola, Varenna, September 1988,Caruso, A. & Sindoni, E., eds. (Editrice Compositori, Bologna), p. 169.Google Scholar
Sigel, R. et al. 1988a Phys. Rev. A 38, 5779.Google Scholar
Sigel, R. et al. 1988b Proc. Soc. Photo-Opt. Instrum. Eng. 831, 73.Google Scholar
Stearns, D. G. et al. 1988 Phys. Rev. 37, 1684.Google Scholar
Stöckl, C. 1989 Diplomarbeit, Technische Hochschule Darmstadt; Max-Planck-Institut für Quantenoptik Report No. MPQ–139.Google Scholar
Stöckl, C. & Tsakiris, G. D. 1990 In Laser Interaction with Matter, Madrid, 1988, Velarde, G., ed. (World Scientific, Singapore), p. 266.Google Scholar
Storm, E. 1988 J. Fusion Energy 7, 131.Google Scholar
Tsakiris, G. D. & Sigel, R. 1988 Phys. Rev. A 38, 5769.CrossRefGoogle Scholar
Tsakiris, G. D. et al. 1986 Europhys. Lett. 2, 213.Google Scholar
Tsakiris, G. D. 1989 Proc. Soc. Photo-Opt. Instrum. Eng. 1032, 910.Google Scholar
Weber, R., Cunningham, P. F. & Balmer, J. E. 1988 Appl. Phys. Lett. 53, 2596.Google Scholar