Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:53:43.476Z Has data issue: false hasContentIssue false

Equation of state and optimum compression in inertial fusion energy

Published online by Cambridge University Press:  15 October 2007

S. Eliezer*
Affiliation:
Soreq, NRC, Yavne, Israel ETSII, Polytechnic University Madrid, Spain
M. Murakami
Affiliation:
ILE, Osaka University, Osaka, Japan
J.M. Martinez Val
Affiliation:
ETSII, Polytechnic University Madrid, Spain
*
Address correspondence and reprint request to: S. Eliezer, Soreq, NRC, Yavne, Israel. E-mail: [email protected]

Abstract

The inertial confinement fusion (ICF) philosophy is based on high compression. The reasoning is that (a) it is cheaper (energetically) to compress than to heat and (b) nuclear reactions are proportional to density square, therefore the more you compress the better you are in ICF. Of course the only limitations of compression are the hydrodynamic instabilities (like Rayleigh-Taylor, etc). Many of the references in the literature require extremely high compression and in particular the pB11 needs extremely huge compressions. In this paper it is shown that there is an optimum of compression, namely gain G is maximum for a definite compression. The value of this density (for a given fuel mass and particular ICF scheme) depends on the equation of state (EOS). We calculate this value for fast ignition (FI) schemes and compare it with the central spark ignition (CSI) model. The gain calculations are based on the ideal gas for the ions and the Fermi-Dirac EOS for the electrons with an effective alpha, as usually suggested from simulations. The “optimum compression” idea is easily understood from the following argument: From EOS data one needs an infinite energy to compress to an infinite density. Since the energy output is finite it is clear that G is zero for infinite compression. On the other hand for normal density with small fuel mass (~ few mg) the gain is also zero. Therefore a maximum should exist somewhere. For the deuterium-tritium fuel with a mass of few mg one gets an optimum at few hundred g/cc. If you compress more then the gain is going down. So there is a desired maximum compression fixed by EOS. Last but not least, bremsstrahlung losses in degenerate plasma are discussed and the clean fusion (i.e., without neutrons) of proton + B11 → 4α is analyzed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford, UK: Clarendon Press.CrossRefGoogle Scholar
Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pulse parameter window versus the penetration depth of the heating particles and the density of the pre-compressed fuel. Phys. Plasmas 6, 33163326.CrossRefGoogle Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norreys, P.A., Setsuhara, Y., Takagi, M., Yamanaka, M. & Yamanaka, C. (1991). High-density compression experiments at ILE. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies of laser driven generation of fast-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401410.CrossRefGoogle Scholar
Basov, N.G., Guskov, S.Yu. & Feoktistov, L.P. (1992). Thermo-nuclear gain of ICF targets with direct heating of the ignitor. J. Soviet Laser Res. 13, 396399.CrossRefGoogle Scholar
Caruso, A. & Strangio, C. (2001). Studies on non-conventional high gain target design for ICF. Laser Part. Beams 19, 295308.CrossRefGoogle Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Eliezer, S. & Martinez-Val, J.M. (1998). Proton-boron11 fusion reactions induced by heat detonation burning waves. Laser Part. Beams 16, 581598.CrossRefGoogle Scholar
Eliezer, S., Ghatak, A., Hora, H. & Teller, E. (2002). Fundamentals of Equations of State. Yavne, Isreal: World Scientific.CrossRefGoogle Scholar
Eliezer, S., Leon, P.T., Martinez-Val, J.M. & Fisher, D.V. (2003). Radiation loss from inertially confined degenerate plasmas. Laser Part. Beams 21, 599607.CrossRefGoogle Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1526.CrossRefGoogle Scholar
Guskov, S.Y. (2001). Direct ignition of inertial fusion targets by a laser-plasma ion stream. Quan. Electr. 31, 885890.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hogan, W.H., Coutant, J., Nakai, S., Rozanov, V.B. & Velarde, G. (1995). Energy from Inertial Fusion. Vienna: International Atomic Energy Agency.Google Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H., Badziak, J., Glowacz, S., Jablonski, S., Skladanowski, Z., Osman, F., Cang, Y., Zhang, J., Miley, G.H., Peng, H.S., He, X.T., Zhang, W.Y., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.CrossRefGoogle Scholar
Klimo, O. & Limpouch, J. (2006). Particle simulation of acceleration of quasineutral plasmas blocks by short laser pulses. Laser Part. Beams 24, 107112.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Eliezer, S., Murakami, M. & Maria Martinez-Val, J. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle ScholarPubMed
Leon, P.T., Eliezer, S., Piera, M., & Martinez-Val, J.M. (2005). Inertial fusion features in degenerate plasmas. Laser Part. Beams 23, 193198.CrossRefGoogle Scholar
Lindl, J.D. (1997). Inertial Confinement Fusion: The quest for Ignition and High Gain Using Indirect Drive. New York: Springer.Google Scholar
Martinez-Val, J.M. & Piera, M. (1997). Fusion burning waves ignited by cumulation jets. Fusion Techn. 32, 131151.CrossRefGoogle Scholar
Martinez-Val, J.M., Eliezer, S., Piera, M. & Velarde, P. (1997). Jet ignited indirect drive inertial fusion targets. AIP Conf. Proc. 406, 208212.Google Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns-MJ laser pulses. Laser Part. Beams 23, 453460.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF-impact fast ignition. Nucl. Fusion 46, 99103.CrossRefGoogle Scholar
Nakai, S. & Mima, K. (2004). Laser driven inertial fusion energy: Present and prospective. Rep. Prog. Phys. 67, 321349.CrossRefGoogle Scholar
Norreys, P.A., Allot, R., Clarke, R.J., Colliers, J., Neely, D., Rose, S.J., Zepf, M., Santala, M., Bell, A.R., Krushelnick, K., Dangor, A.E., Woolsey, N.C., Evans, R.G., Habara, H., Norimatsu, T. & Kodama, R. (2000). Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 37213726.CrossRefGoogle Scholar
Nuckolls, J.H., Wood, L., Thiessen, A. & Zimmermann, G.B. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature 239, 139142.CrossRefGoogle Scholar
Ray, A., Srivastava, M.K., Kondayya, G., Menon, S.V.G. (2006). Improved equation of state of metals in the liquid-vapor region. Laser Part. Beams 24, 437445.CrossRefGoogle Scholar
Rosen, M.D. (1999). The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial. Phys. Plasma 6, 16901699.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Son, S. & Fisch, N J. (2004). Aneutronic fusion in a degenerate plasma. Phys. Lett A 329, 7680.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Velarde, G. & Santamaria, N.C. (2006). Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers. London, UK: Foxwell and Davies.Google Scholar
Velarde, G., Ronen, Y. & Martinez-Val, J.M. (1992). Nuclear Fusion by Inertial Confinement. Boca Raton: CRC Press.Google Scholar
Velarde, P., Martinez-Val, J.M., Eliezer, S., Piera, M., Guillen, J., Cobo, M.D., Ogando, F., Crisol, A., Gonzales, L., Prieto, J. & Velarde, G. (1997). Hypervelocity jets from conical hollow charges. AIP Conf. Proc. 406, 182.Google Scholar
Velarde, P., Ogando, F., Eliezer, S., Martinez-Val, J.M., Perlado, J.M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.CrossRefGoogle Scholar