Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T15:28:40.276Z Has data issue: false hasContentIssue false

Enhancement of monoenergetic proton beams via cone substrate in high intensity laser pulse-double layer target interactions

Published online by Cambridge University Press:  01 December 2010

Weimin Zhou*
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Yuqiu Gu
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Wei Hong
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Leifeng Cao
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Zongqing Zhao
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Yongkun Ding
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Baohan Zhang
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Hongbo Cai
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
Kunioki Mima
Affiliation:
Institute of laser Engineering, Osaka University, Suita, Osaka, Japan
*
Address correspondence and reprint requests to: Weimin Zhou, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province 621900, China. E-mail: [email protected]

Abstract

A scheme capable of enhancing the energy of monoenergetic protons in high intensity laser-plasma interactions is proposed and demonstrated by two dimensional particle-in-cell simulations. The focusing of laser light pulse and the guiding of surface current via the high Z material cone-shaped substrate increase the temperature of hot electrons, which are responsible for the electrostatic field accelerating protons. Moreover, the sub-micron proton layer coated on the cone-shaped substrate makes the total proton beam experience the same accelerating field, thus the monochromaticity is maintained. Compared to the normal film double layer target, the energy of monoenergetic proton beams can be improved about three times.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Birdsall, C.K. & Langdon, A.B. (1991). Plasma Physics Via Computer Simulation. New York: McGraw-Hill.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Mackinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Z., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240247.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670.Google Scholar
Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003.CrossRefGoogle ScholarPubMed
Flippo, K.A., D'humieres, E., Gaillard, S.A., Rassuchine, J., Gautier, D.C., Schollmeier, M., Nurnberg, F., Kline, J.L., Adams, J., Albright, B., Bakeman, M., Harres, K., Johnson, R.P., Korgan, G., Letzring, S., Malekos, S., Renard-Legalloudec, N., Sentoku, Y., Shimada, T., Roth, M., Cowan, T.E., Fernandez, J.C. & Hegelich, B.M. (2008). Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Phys. Plasmas 15, 056709056712.Google Scholar
Kado, M., Daido, H., Fukumi, A., Li, Z., Orimo, S., Hayashi, Y., Nishiuchi, M., Sagisaka, A., Ogura, K., Mori, M., Nakamura, S., Noda, A., Iwashita, Y., Shirai, T., Tongu, H., Takeuchi, T., Yamazaki, A., Itoh, H., Souda, H., Nemoto, K., Oishi, Y., Nayuki, T., Kiriyama, H., Kanazawa, S., Aoyama, M., Akahane, Y., Inoue, N., Tsuji, K., Nakai, Y., Yamamoto, Y., Kotaki, H., Kondo, S., Bulanov, S., Esirkepov, T., Utsumi, T., Nagashima, A., Kimura, T. & Yamakawa, K. (2006). Observation of strongly collimated proton beam from Tantalum targets irradiated with circular polarized laser pulses. Laser Part. Beams 24, 117123.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle ScholarPubMed
Li, X.M., Shen, B.F., Zhang, X.M., Jin, Z.Y. & Wang, F.C. (2008). The diagnostics of density distribution for inhomogeneous dense DT plasmas using fast protons. Laser Part. Beams 26, 139145.Google Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Y. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 4108.Google Scholar
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets. Laser Part. Beams 26, 207212.CrossRefGoogle Scholar
Nakamura, T., Kato, M., Nagatomo, H. & Mima, K. (2004). Surface-magnetic-field and fast-electron current-layer formation by ultraintense laser irradiation. Phys. Rev. Lett. 93, 265002.CrossRefGoogle ScholarPubMed
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jackel, O., Amthor, K.U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. 439, 445448.Google Scholar
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 30833087.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.Google Scholar
Ter-Avetisyan, S., Schnurer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.Google Scholar
Umeda, T., Omura, Y., Tominaga, T. & Matsumoto, H. (2003). A new charge conservation method in electromagnetic particle-in-cell simulations. Comp. Phys. Commun. 156, 7385.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser—solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar