Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T21:00:13.827Z Has data issue: false hasContentIssue false

Enhancement of extreme ultraviolet emission from laser irradiated targets by surface nanostructures

Published online by Cambridge University Press:  11 September 2017

E. F. Barte*
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Praha 1, Czech Republic UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
R. Lokasani
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Praha 1, Czech Republic UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
J. Proska
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Praha 1, Czech Republic
L. Maresova
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Praha 1, Czech Republic
D. Kos
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Praha 1, Czech Republic UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
O. Maguire
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
G. Joseph
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
J. Sheil
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
F. O'Reilly
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
T. McCormack
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
E. Sokell
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
G. O'Sullivan
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
J. Limpouch*
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Praha 1, Czech Republic
P. Dunne
Affiliation:
UCD School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
*
Address correspondence and reprint requests to: Ellie Floyd Barte and Prof. Jiří Limpouch, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holesovickach 2, 180 00 Praha 8, Czech Republic. E-mail: [email protected]
Address correspondence and reprint requests to: Ellie Floyd Barte and Prof. Jiří Limpouch, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holesovickach 2, 180 00 Praha 8, Czech Republic. E-mail: [email protected]

Abstract

The effects of shape and thickness of a tin surface layer and of the energy of a 170 ps neodymium:yttrium-aluminum-garnet laser pulse on the conversion efficiency (CE) into extreme ultraviolet emission in the 13.5 nm region is investigated. Whereas a CE of up to 1.16% into the 2% reflection band of multilayer Mo/Si optics was measured for a bulk Sn target at a laser energy of 25 mJ, significant CE enhancement up to 1.49% is demonstrated for a 200-nm-thick Sn layer on a microstructured porous alumina substrate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauche, J., Bauche-arnoult, C. & Klapisch, M. (1988) Unresolved transition arrays. Phys. Scr. 37, 659663.Google Scholar
Chakravarty, U., Arora, V., Chakera, J.A., Naik, P.A., Srivastava, H., Tiwari, P., Srivastava, A. & Gupta, P.D. (2011). X-ray enhancement in a nanohole target irradiated by intense ultrashort laser. J. Appl. Phys. 109, 053301.Google Scholar
Churilov, S.S. & Ryabtsev, A.N. (2006 a). Analyses of the SnIX-Sn XII spectra in the EUV region. Phys. Scr. 73, 614619.CrossRefGoogle Scholar
Churilov, S.S. & Ryabtsev, A.N. (2006 b). Analysis of the spectra of In XII-XIV and Sn XIII-XV in the far-VUV region. Opt. Spectrosc. 101, 169178.Google Scholar
D'Arcy, R., Ohashi, H., Suda, S., Tanuma, H., Fujioka, S., Nishimura, H., Nishihara, K., Suzuki, C., Kato, T., Koike, F., O'Connor, A. & O'Sullivan, G. (2009). Identification of 4d–5p transitions in the spectra of Sn XV–Sn XIX recorded from collisions between Sn ions and He. J. Phys. B: At. Mol. Opt. Phys. 42, 165207.Google Scholar
Dunne, P., O'Sullivan, G. & Ivanov, V.K. (1993). Extreme-ultraviolet absorption-spectrum of Ga+. Phys. Rev. A 48, 43584364.CrossRefGoogle ScholarPubMed
Fomenkov, I.V., Brandt, D.C., Farrar, N.R., La Fontaine, B., Myers, D.W., Brown, D.J., Ershov, A. I., Bowering, N.R., Riggs, D.J., Rafac, R.J., De Dea, S., Purvis, M., Peeters, R., Meiling, H., Harned, N., Smith, D., Kazinczi, R. & Pirati, A. (2014). Laser produced plasma light source development for HVM. Proc. SPIE 9048, 904835.Google Scholar
Ge, L.Q., Bai, L.L., Fei, T., Wang, W.C., Nagai, K., Nishimura, H., Izawa, Y., Mima, K. & Norimatsu, (2011). Effect of Nd:YAG laser energy on multilayer hollow nanofiber target's extreme ultraviolet conversion efficiency. J. Macromol. Sci. B-Phys. 50, 17611770.Google Scholar
Ge, L.Q., Nagai, K., Gu, Z.Z., Shimada, Y., Nishimura, H., Miyanaga, N., Izawa, Y., Mima, K. & Norimatsu, T. (2008). Dry tin dioxide hollow microshells and extreme ultraviolet radiation induced by CO2 laser illumination. Langmiur 24, 1040210406.CrossRefGoogle ScholarPubMed
Hayden, P. (2007). Extreme ultraviolet source development using laser plasmas containing tin. PhD Thesis. University College Dublin, Ireland.Google Scholar
Hayden, P., Cummings, A., Murphy, N., O'Sullivan, G., Sheridan, P., White, J. & Dunne, P. (2006). 13.5 nm extreme ultraviolet emission from tin based laser produced plasma sources. Appl. Phys. Lett. 99, 093302.Google Scholar
Lokasani, R., Arai, G., Kondo, Y., Hara, H., Dinh, T. H., Ejima, T., Hatano, T., Jiang, W., Makimura, T., Li, B., Dunne, P., O'Sullivan, G., Higashiguchi, T. & Limpouch, J. (2016). Soft X-ray emission from molybdenum plasmas generated by dual laser pulses. Appl. Phys. Lett. 109, 194103.CrossRefGoogle Scholar
Lokasani, R., Long, E., Maguire, O., Sheridan, P., Hayden, P., O'Reilly, F., Dunne, P., Sokell, E., Endo, A., Limpouch, J. & O'Sullivan, G. (2015). XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d–4f transition arrays. J. Phys. B: At. Mol. Opt. Phys. 48, 245009.CrossRefGoogle Scholar
Mahdieh, N.H., Fazeli, R. & Tallents, G.J. (2009). Soft x-ray enhancement from a porous nano-layer on metal targets irradiated by long laser pulses. J. Phys. B: At. Mol. Opt. Phys. 42, 125602.Google Scholar
Mocek, T., Jakubczak, K., Kozlova, M., Polan, J., Homer, P., Hrebicek, J., Sawicka, M., Kim, I.J., Park, S.B., Kim, C.M., Lee, G.H., Kim, T.K., Nam, C.H., Chalupsky, J., Hajkova, V., Juha, L., Sobota, J., Fort, T. & Rus, B. (2010). Ablative microstructuring with plasma-based XUV lasers and efficient processing of materials by dual action of XUV/NIR-VIS ultrashort pulses. Radiat. Eff. Defects Solids 165, 551558.Google Scholar
Nagai, K., Gu, Q., Norimatsu, T., Fujioka, S., Nishimura, H., Miyanaga, N., Nishihara, K., Izawa, Y. & Mima, K. (2006) Laser Part. Beams 26, 497500.CrossRefGoogle Scholar
Nishikawa, T., Nakano, H., Ahn, H. & Uesugi, N. (2004b). Nanohole-array size dependence of soft x-ray generation enhancement from femtosecond-laser-produced plasma. J. Appl. Phys. 96, 75377543.Google Scholar
Nishikawa, T., Nakano, H., Ahn, H., Uesugi, N. & Serikawa, T. (1997). X-ray generation enhancement from a laser-produced plasma. Appl. Phys. Lett. 70, 16531655.Google Scholar
Nishikawa, T., Nakano, H., Oguri, K., Uesugi, N., Nakao, M., Nishio, K. & Masuda, H. (2001). Nanocylinder-array structure greatly increases the soft X-ray intensity generated from femtosecond-laser-produced plasma. Appl. Phys. B 73, 185188.Google Scholar
Nishikawa, T., Suzuki, S., Watanabe, Y., Zhou, O. & Nakano, H. (2004a). Efficient water-window X-ray pulse generation from femtosecond-laser-produced plasma by using a carbon nanotube target. Appl. Phys. B 78, 885890.Google Scholar
Okuno, T., Fujioka, S., Nishimura, H., Tao, Y., Nagai, K., Gu, Q., Ueda, N., Ando, T., Nishihara, K., Norimatsu, T., Miyanaga, N., Izawa, Y., Mima, K., Sunahara, A., Furukawa, H. & Sasaki, A. (2006). Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas. Appl. Phys. Lett. 88, 161501.Google Scholar
Sugar, J., Kaufman, V. & Rowan, W.L. (1992). Rb-like spectra – Pd-X to Nd-XXIV. J. Opt. Soc. Am. B 9, 19591961.Google Scholar
Suzuki, C., Kato, T., Sakaue, H.A., Kato, D., Sato, K., Tamura, N., Sudo, S., Yamamoto, N., Tanuma, H., Ohashi, H., D'Arcy, R. & O'Sullivan, G. (2010) Analysis of EUV spectra of Sn XIX–XXII observed in low-density plasmas in the large helical device. J. Phys. B: At. Mol. Opt. Phys. 43, 074027.Google Scholar
Wachulak, P., Torrisi, A., Nawaz, M.F., Bartnik, A., Adjei, D., Vondrova, S., Turnová, J., Jancarek, A., Limpouch, J., Vrbova, M. & Fiedorowicz, H. (2015). A compact “water window” microscope with 60 nm spatial resolution for applications in biology and nanotechnology. Microsc. Microanal. 21, 12141223.Google Scholar
Wu, B. & Kumar, A. (2014). Extreme ultraviolet lithography and three dimensional integrated circuit-A review. Appl. Phys. Rev. 1, 011104.CrossRefGoogle Scholar