Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T14:18:03.632Z Has data issue: false hasContentIssue false

Enhanced laser ion acceleration with a multi-layer foam target assembly

Published online by Cambridge University Press:  22 August 2014

E. Yazdani
Affiliation:
Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
R. Sadighi-Bonabi*
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
H. Afarideh*
Affiliation:
Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
J. Yazdanpanah
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
*
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran. E-mail: [email protected]; or Hossein-Afarideh, Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran. E-mail: [email protected]
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran. E-mail: [email protected]; or Hossein-Afarideh, Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran. E-mail: [email protected]

Abstract

Interaction of a linearly polarized Gaussian laser pulse (at relativistic intensity of 2.0 × 1020 Wcm−2) with a multi-layer foam (as a near critical density target) attached to a solid layer is investigated by using two-dimensional particle-in-cell simulation. It is found that electrons with longitudinal momentum exceeding the free electrons limit of meca02/2 so-called super-hot electrons can be produced when the direct laser acceleration regime is fulfilled and benefited from self-focusing inside of the subcritical plasma. These electrons penetrate easily through the target and can enhance greatly the sheath field at the rear, resulting in a significant increase in the maximum energy of protons in target normal sheath acceleration regime. The results indicate that the maximum proton energy is enhanced by 2.7 times via using an assembled target arrangement compared to a bare solid target. Furthermore, by demonstration of this assembly, the maximum proton energy is improved beyond the optimum amount achieved by a two-layer target proposed by Sgattoni et al. (2012).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.Google Scholar
Borghesi, M., Toncian, T., Fuchs, J., Cecchetti, C.A., Romagnani, L., Kar, S., Quinn, K., Ramakrishna, B., Wilson, P.A., Antici, P., Audebert, P., Brambrink, E., Pipahl, A., Jung, R., Amin, M., Willi, O., Larke, R.J., Notley, M., Mora, P., Grismayer, T., D'humières, E. & Sentoku, Y. (2009). Laser-driven proton acceleration and applications: Recent results. EPJST 175, 105.Google Scholar
Bulanov, S.S., Brantov, A., Bychenkov, V.Yu., Chvykov, V. , Kalinchenko, G., Matsuoka, T., Rousseau, P., Reed, S., Yanovsky, V., Litzenberg, D.W., Krushelnick, K. & Maksimchuk, A. (2008). Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Phys. Rev. E 78, 026412.Google Scholar
Bulanov, S.S., Bychenkov, V.Y, Chvykov, V., Kalinchenko, G., Litzenberg, D.W., Matsuoka, T., Thomas, A.G.R., Willingale, L., Yanovsky, V., Krushelnick, K. & Maksimchuk, A. (2010). Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17, 0431052010.Google Scholar
Ceccotti, T., Floquet, V., Sgattoni, A., Bigongiari, A., Raynaud, M., Riconda, C., Heron, A., Baffigi, F., Labate, L., Gizzi, L.A., Vassura, L., Fuchs, J., Passoni, M., Kveton, M., Novotny, F., Possolt, M., Prokupek, J., Proska, J., Psikal, J., Stolcova, L., Velyhan, A., Bougeard, M., D'oliveira, P., Tcherbakoff, O., Reau, F., Martin, P. & Macchi, A. (2013). Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett. 111, 185001.Google Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.Google Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-Ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772.Google Scholar
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, T., Geissel, M.Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in micro-cone targets. Phys. Plasmas 18, 056710.Google Scholar
Geddes, C.G.R., Toth, CS., Tilborg, J.Van., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wake field accelerator using plasma-channel guiding. Nature 431, 538541.Google Scholar
Gonoskov, A.A., Korzhimanov, A.V., Eremin, V.I., Kim, A.V. & Sergeev, A.M. (2009). Multicascade proton acceleration by a superintense laser pulse in the regime of relativistically induced slab transparency. Phys. Rev. Lett. 102, 184801.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076.Google Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.Google Scholar
Henig, A., Kiefer, D., Geissler, M., Rykovanov, S.G., Ramis, R., Hörlein, R., Osterhoff, J., Major, Z.S., Veisz, L., Karsch, S., Krausz, F., Habs, D. & Schreiber, J. (2009). Laser-driven shock acceleration of ion beams from spherical mass-limited targets. Phys. Rev. Lett. 102, 095002.Google Scholar
Hora, H., Sadighi-Bonabi, R., Yazdani, E., Afarideh, H., Nafari, F. & Ghorannevis, M. (2012). Effect of quantum correction on the acceleration and delayed heating of plasma blocks. Phys. Rev. E 85, 036404.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882.Google Scholar
Hora, H. (1973). Relativistic oscillation of charged particles in laser fields and pair production. Nature Phys. Sci. 243, 34.Google Scholar
Jung, D., Yin, L., Gautier, D.C., Wu, H.C., Letzring, S., Dromey, B., Shah, R., Palaniyappan, S., Shimada, T., Johnson, R.P., Schreiber, J., Habs, D., Fernández, J.C., Hegelich, B.M. & Albright, B.J. (2013). Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime. Phys. Plasmas 20, 083103.Google Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Yu. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225.Google Scholar
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006.CrossRefGoogle ScholarPubMed
Malka, V., Fritzler, S., Lefebvre, Erik, D'humieres, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.P., Antonetti, A. & Hulin, D. (2004). Practicability of proton therapy using compact laser systems. D. Med. Phys. 31, 1587.Google Scholar
Margarone, D., Klimo, O., Kim, I.J., Prokupek, J., Limpouch, J., Jeong, T.M., Mocek, T., Psikal, J., Kim, H.T., Proska, J., Hnam, K., Stolcova, L., Choi, I.W., Lee, S.K., Sung, J.H., Yu, T.J. & Korn, G. (2012). Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett. 109, 234801.Google Scholar
Nakamura, T., Tampo, M., Kodama, R., Bulanovs, V. & Kando, M. (2010). Interaction of high contrast laser pulse with foam-attached target. Phys. Plasmas 17, 113107.Google Scholar
Nikzad, L., Sadighi-Bonabi, R., Riazi, Z., Mohammadi, M. & Heydarian, F. (2012). Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma. Phys. Rev. ST Accel. Beams 15, 021301.Google Scholar
Pukhov, A., Sheng, Z.-M. & Meyer-Ter-Vehn, T. (1999). Particle acceleration in relativistic laser channels. J. Phys. Plasmas 6, 2847.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.Google Scholar
Sadighi-Bonabi, R. & Moshkelgosha, M. (2011). Self-focusing up to the incident laser wavelength by an appropriate density ramp. Laser Part. Beams 29, 453.Google Scholar
Sadighi-Bonabi, R. & Rahmatollahpur, S.H. (2010). Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model. Phy. Rev. A. 81, 023408.Google Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101.Google Scholar
Sgattoni, A., Londrillo, P., Macchi, A. & Passoni, M. (2012). Laser ion acceleration using a solid target coupled with a low-density layer. Phys. Rev. E 85, 036405.Google Scholar
Shirozhan, M., Moshkelgosha, M. & Sadighi-Bonabi, R. (2014). The effects of circularly polarized laser pulse on generated electron nanobunches in oscillating mirror model. Laser Part. Beams (in press).Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.Google Scholar
Sylla, F., Flacco, A., Kahaly, S., Veltcheva, M., Lifschitz, A., Malka, V., D'humieres, E., Andriyash, I. & Tikhonchuk, V. (2013). Short intense laser pulse COLLAPSE in near-critical plasma. Phys. Rev. Lett. 110, 085001.Google Scholar
Wang, H.Y., Lin, C., Sheng, Z.M., Liu, B., Zhao, S., Guo, Z.Y., Lu, Y.R., He, X.T., Chen, J.E., & Yan, X.Q. (2011). Laser shaping of a relativistic intense, short gaussian pulse by a plasma lens. Phys. Rev. Lett. 107, 265002.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.Google Scholar
Willingale, L., Nilson, P.M., Thomas, A.G.R., Bulanov, S.S., Maksimchuk, A., Nazarov, W., Sangster, T.C., Stoeckl, C. & Krushelnick, K. (2011). High-power, kilojoule laser interactions with near-critical density plasma. Phys. Plasmas 18, 056706.Google Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F.H. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149.Google Scholar
Yazdanpanah, J. & Anvari, A. (2014). Effects of initially energetic electrons on relativistic laser-driven electron plasma waves. Phys. Plasmas 21, 023101.Google Scholar
Yu, Wei., Bychenkov, V., Sentoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett. 85, 570.Google Scholar
Zani, A., Dellasega, D., Russo, V. & Passoni, M. (2013). Ultra-low density carbon foams produced by pulsed laser deposition. Carbon 56, 358365.Google Scholar