Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:05:55.319Z Has data issue: false hasContentIssue false

Energy spectra of electrons emitted from laser irradiated low-density gas and the correspondence principle of electromagnetic interaction

Published online by Cambridge University Press:  09 March 2009

B.W. Boreham
Affiliation:
Department of Applied Physics, University of Central Queensland, Rockhampton, Queensland 4702, Australia
H. Hora
Affiliation:
Department of Applied Physics, University of Central Queensland, Rockhampton, Queensland 4702, Australia
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, NSW 2033 Australia

Abstract

It is expected (Hora & Handel 1987) that the energy spectra of electrons emitted from laserirradiated atoms in low-density gases would be fundamentally different for laser intensities above and below the threshold of a correspondence principle. Below such a threshold, the emission is a quantum mechanical interaction while, in contrast, above the threshold it is a classical process. Both of our earlier experiments (Boreham & Hora 1979; Boreham & Luther-Davies 1979) and those of several others, including some very recent results (Monot et al. 1993) confirm—after some controversy—the existence of such a correspondence principle. Details are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostini, P. et al. 1979 Phys. Rev. Lett. 42, 1127.CrossRefGoogle Scholar
Augst, S. et al. 1989 Phys. Rev. Lett. 20, 2212.CrossRefGoogle Scholar
Baldwin, K.G.H. & Boreham, B.W. 1981 J. Appl. Physics 52, 2627.CrossRefGoogle Scholar
Ben-Aryeh, Y. et al. 1983. Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G., eds. (Plenum, New York), vol. 6, p. 165.Google Scholar
Boreham, B.W. 1979 presented at Europhysics Study Conference on Multiphoton Processes, Benodet, France, 1822.Google Scholar
Boreham, B.W. 1992 Laser Part. Beam 10, 311.CrossRefGoogle Scholar
Boreham, B.W. & Hora, H. 1979 Phys. Rev. Lett. 42, 776.CrossRefGoogle Scholar
Boreham, B.W. & Hughes, J.L. 1980 J. Opt. Soc. Am. 70, 619.Google Scholar
Boreham, B.W. & Hughes, J.L. 1981 Sov. Phys. JETP 53, 252.Google Scholar
Boreham, B.W. & Luther-Davies, B. 1979 J. Appl. Phys. 50, 2533.CrossRefGoogle Scholar
Boreham, B.W. et al. 1979 In Proc. of 11th International Symposium on Rarefied Gas Dynamics, Cannes, 07 38, Campargue, R., ed. (CEA, Paris), 1, 505.Google Scholar
Boreham, B.W. et al. 1980 presented at the 2nd International Conference on Multiphoton Processes Budapest, Hungary, 04 1418.Google Scholar
Bransden, B.H. & Joachain, C.J. 1989 Introduction to Quantum Mechanics (Longman Scientific and Technical, Harlow, Essex, England; Wiley, New York), p. 9.Google Scholar
Cicchitelli, L. et al. 1990 Phys. Rev. A41, 3727.CrossRefGoogle Scholar
Crance, M. 1984 J. Phys. B: At. Mol. Phys. 17, L355.Google Scholar
Deng, X. 1992 Laser Part. Beam 10, 117.Google Scholar
Eberly, J.H. 1991 Atomic Physics and Nonlinear Optics in Very Strong Laser Fields (Springer-Verlag, Berlin), p. 77.Google Scholar
Flambaum, V.V. & Kuchiev, M.Yu. 1995 Atomic & Molec. Phys. Conference(Canberra, Australia)02 13–17 Abstracts, p. 11.Google Scholar
Gibson, G. et al. 1990 Phys. Rev. A 41, 5049.CrossRefGoogle Scholar
Heller, E.J & Tomosovic, S. 1993 Phys. Today 46, 38.CrossRefGoogle Scholar
Hora, H. 1981 Plasmas at High Temperature and Density (Wiley, New York), p. 230.Google Scholar
Hora, H. 1991a Physics and Laser Driven Plasmas (Wiley, New York), chap. 12.Google Scholar
Hora, H. 1991b Physics and Laser Driven Plasmas (Wiley, New York), p. 383.Google Scholar
Hora, H. & Handel, P.H. 1987 Advances in Electronic and Electron Physics (Academic Press, New York), 69, 72.Google Scholar
Hora, H. et al. 1979 Sov. Quant. Elect. Kvant Elektr. 19, 464.CrossRefGoogle Scholar
Jaynes, E.T. 1991 In The Electron, Hestenes, D. and Weingartshofer, A., eds. (Kluwer Academic Publishers, Amsterdam).Google Scholar
Keldysh, L.V. 1965 Sov. Phys. JETP 20, 1306.Google Scholar
Knight, P. 1989 The New Physics, Davies, P. ed. (Cambridge University Press, New York), p. 302.Google Scholar
Kroll, N.M. & Watson, M. 1973 Phys. Rev. A 8, 804.CrossRefGoogle Scholar
Kruit, P. et al. 1983 Phys. Rev. A 28, 249.CrossRefGoogle Scholar
Kuchiev, M.Yu. 1987 JETP-Lett 15, 404.Google Scholar
Kuchiev, M.Yu. 1995 J. Phys. B (submitted).Google Scholar
Lompre, L.A. et al. 1985 J. Opt. Soc. Am. B 2, 1906.CrossRefGoogle Scholar
MacGregor, M.H. 1992 The Enigmatic Electron (Kluwer Academic Publishers, Dordrecht, The Netherlands), chap. 4.Google Scholar
Meyers, R. 1987 Encyclopedia of Physical Science and Technology (Academic Press, San Diego, CA), 7, p. 125.Google Scholar
Meyers, R. 1992 Encyclopedia of Physical Science and Technology (Academic Press, San Diego, CA), 2nd ed., 8, p. 421.Google Scholar
Monot, P. et al. 1993 Phys. Rev. Lett. 70, 1232.CrossRefGoogle Scholar
Palmer, A.J. 1983 Appl. Phys. Lett. 42, 1011.CrossRefGoogle Scholar
Perry, M.D. et al. 1988 Phys. Rev. Lett. 60, 1270.CrossRefGoogle Scholar
Rosenfeld, L. 1973 The Physicists Conception of Nature,Mehra, J., ed. (Reidel, Dordrecht).Google Scholar
Rosenberg, A. et al. 1980 Phys. Rev. Lett. 45, 1787.CrossRefGoogle Scholar
Rosenberg, A. et al. 1982 Phys. Rev. A 25, 1160.CrossRefGoogle Scholar
Schwarz, H. & Hora, H. 1969 Appl. Phys. Lett. 15, 349.CrossRefGoogle Scholar