Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T06:04:04.253Z Has data issue: false hasContentIssue false

Energy dissipation of ion beam in two-component plasma in the presence of laser irradiation

Published online by Cambridge University Press:  11 July 2011

Zhang-Hu Hu
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
Yuan-Hong Song
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
Z.L. Mišković
Affiliation:
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
You-Nian Wang*
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
*
Address correspondence and reprint requests to: You-Nian Wang, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China116024. E-mail: [email protected]

Abstract

We use a two-dimensional particle-in-cell simulation to investigate the dynamic polarization and stopping power for an ion beam propagating through a two-component plasma, which is simultaneously irradiated by a strong laser pulse. Compared to the laser-free case, we observe a reduction in the instantaneous stopping power that initially follows the shape of the laser pulse and becomes particularly large as the laser frequency approaches the plasma electron frequency. We attribute this large reduction in the ion stopping power to an increase in plasma temperature due to the energy absorbed in the plasma from the laser pulse through the process of wave heating. In addition, dynamic polarization of the plasma by the ion is found to be strongly modulated by the laser field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arista, N.R., Galvao, R.O.M. & Miranda, L.C.M. (1989). Laser-field effects on the interaction of charged particles with a degenerate electron gas. Phys. Rev. A 40, 38083816.Google Scholar
Arista, N.R., Galvao, R.O.M. & Miranda, L.C.M. (1990). Influence of a strong laser field on the stopping power for charged test particles in nondegenerate plasmas. J. Phys. Soc. Jpn. 59, 554–552.Google Scholar
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.Google Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., River, M.F., Servagean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction: A standard model approach. Nucl. Instrum. Methods Phys. Res A 278, 3843.CrossRefGoogle Scholar
Frank, A., Grande, P.L., Harres, K., Heßling, T., Hoffmann, D.H.H., Knobloch-Maas, R., Kuznetsov, P.G., Nürnberg, F., Pelka, A., Schaumann, G., Schiwietz, G., Schökel, A., Schollmeier, M., Schumacher, D., Schütrumpf, J., Vatulin, V.V., Vinokurov, O.A. & Roth, M. (2010). Energy loss of argon in a laser-generated carbon plasma. Phys. Rev. E 81, 026401.Google Scholar
Hockney, R.W. & Eastwood, J.W. (1981). Computer Simulation Using Particles (Rao, S. and Eichberg, M.). New York: McGraw-Hill.Google Scholar
Hoffmann, D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.Google Scholar
Hoffmann, D.H.H., Tahir, N.A., Udreal, S., Rosmej, O., Meister, C.V., Varentsov, D., Roth, M., Schaumann, G., Frank, A., Blažević, A., Ling, J., Hug, A., Menzel, J., Hessling, Th., Harres, K., Günther, M., El-Moussatil, S., Schumacher, D. & Imran, M. (2010). High Energy Density Physics with Heavy Ion Beams and related Interaction Phenomena. Contrib. Plasma Phys. 50, 715.Google Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2009). Dynamic polarization and energy dissipation for charged particles moving in magnetized two-component plasmas. Phys. Rev. E 79, 016405.Google Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2010). Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: Two-dimensional particle-in-cell simulation. Phys. Rev. E 82, 026404.Google Scholar
Kruer, W. L., Kaw, P. K., Dawson, J. M. & Oberman, C. (1970). Anomalous High-Frequency Resistivity and Heating of a Plasma. Phys. Rev. Lett. 24, 987990.CrossRefGoogle Scholar
Kruer, W. L. (1981). The Physics of Laser Plasma Interaction (Pines, D.). New York: Addison–Wesley.Google Scholar
Nanbu, K. (1997). Theory of cumulative small-angle collisions in plasmas. Phys. Rev. E 55, 46424652.CrossRefGoogle Scholar
Nellis, W.J. (2006). Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 14791580.CrossRefGoogle Scholar
Nersisyan, H.B. & Akopyan, E.A. (1999). Stopping and acceleration effect of protons in a plasma in the presence of an intense radiation field. Phys. Lett. A 258, 323328.CrossRefGoogle Scholar
Nettelmann, N., Holst, B., Kietzmann, A., French, M., Redmer, R. & Blaschke, D. (2008). Ab initio equation of state data for hydrogen, helium, and water and the internal structure of jupiter. Astrophys. Jour. 683, 12171228.Google Scholar
Oguri, Y., Tsubuku, K., Sakumi, A., Shibata, K., Sato, R., Nishigori, K., Hasegawa, J. & Ogawa, M. (2000). Heavy ion stripping by a highly-ionized laser plasma. Nucl. Instrum. Methods Phys. Res. B 161-163, 155158.CrossRefGoogle Scholar
Roth, M., Stöckll, C., Suß, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. EPL 50, 2834.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast Ignition by Intense Laser-Accelerated Proton Beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Stöckl, C., Frankenheim, O.B., Roth, M., Suß, W., Wetzler, H., Seelig, W., Kulish, M., Dornik, M., Laux, W., Spiller, P., Stetter, M., Stöwe, S., Jacoby, J. & Hoffmann, D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.Google Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the Study of Thermophysical Properties of High-Energy-Density Matter Using Current and Future Heavy-Ion Accelerator Facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar