Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T19:17:56.789Z Has data issue: false hasContentIssue false

Energy and angular distribution of ions emitted from a plasma after relativistic self-focusing of laser beams*

Published online by Cambridge University Press:  09 March 2009

Thomas Häuser
Affiliation:
Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, Germany
Werner Scheid
Affiliation:
Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, Germany

Abstract

High-intensity laser beams propagating in a plasma become focused because the index of refraction depends on the relativistic mass of the electron and therefore is a function of the electric field strength through the electron velocity. Around the focus the laser field has such a high density of energy that electrons and ions are emitted owing to the nonlinear force arising from this field. The equations of motion for the electrons and the ions and the Maxwellian equations for the laser and plasma fields are solved under certain approximations. We calculate the maximal energy and the angular distribution of the emitted ions and compare the results with experimental data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S. A., Sukhorukov, A. P. & Khokhlov, R. V. 1968 Sov. Phys. Usp. 93, 609.CrossRefGoogle Scholar
Andreev, N. E. et al. 1979 Sov. Phys. JETP 49, 402.Google Scholar
Askar'yan, G. A. 1962 Sov. Phys. JETP 15, 1088.Google Scholar
Basov, N. G. et al. 1987 Zh. Eksp. Teor. Fiz. 92, 1299 (Sov. Phys. JETP 65, 727).Google Scholar
Clark, P. J. et al. 1985 In Laser Acceleration of Particles, AIP Conference Proceedings No.130,Joshi, C., ed. (American Institute of Physics, New York), p. 380.Google Scholar
Church, P., Martin, F. & Pepin, H. 1982 J. Appl. Phys. 53, 874.CrossRefGoogle Scholar
Ehler, A. W. 1975 J. Appl. Phys. 46, 2464.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. 1989 Phys. Rep. 172, 341.CrossRefGoogle Scholar
Gitomer, S. J. et al. 1988 Phys. Fluids 29, 2679.CrossRefGoogle Scholar
Häuser, T., Scheid, W. & Hora, H. 1988 J. Opt. Soc. Am. B 5, 2029.Google Scholar
Hora, H. 1975 J. Opt. Soc. Am. 65, 882.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser-driven Plasmas (Wiley, New York).Google Scholar
Hora, H. & Kane, E. L. 1977 Appl. Phys. 13, 165.Google Scholar
Hora, H., Kane, E. L. & Hughes, J. L. 1978 J. Appl. Phys. 49, 923.Google Scholar
Hora, H. et al. 1982 In Laser Acceleration of Particles, AIP Conference Proceedings No.91,Channel, P., ed. (American Institute of Physics, New York), p. 112.Google Scholar
Kane, E. L. & Hora, H. 1981 Aust. J. Phys. 34, 385.CrossRefGoogle Scholar
Martineau, J. et al. 1975 Opt. Commun. 15, 404.CrossRefGoogle Scholar
Schlüter, A. 1950 Z. Naturforsch. 5a, 72.CrossRefGoogle Scholar
Sessler, A. M. 1982 In Laser Acceleration of Particles, AIP Conference Proceedings No.91,Channel, P., ed. (American Institute of Physics, New York), p. 10.Google Scholar
Siegrist, M. R., Luther-Davies, B. & Hughes, J. L. 1976 Opt. Commun. 18, 603.Google Scholar
Spatschek, K. H. 1977 J. Plasma Phys. 18, 293.CrossRefGoogle Scholar
Svelto, O. 1974 In Progress in Optics XII, Wolf, E., ed. (North-Holland, Amsterdam), p. 3.Google Scholar