Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T19:45:19.012Z Has data issue: false hasContentIssue false

Electron-beam accelerator for pumping of a Xe2 lamp

Published online by Cambridge University Press:  05 January 2012

B.M. Kovalchuk
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
A.V. Kharlov*
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
S.N. Volkov
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
A.A. Zherlitsyn
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
V.B. Zorin
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
G.V. Smorudov
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
V.N. Kiselev
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
*
Address correspondence and reprint requests to: A.V. Kharlov, 2/3 Academichesky Ave., 634055, Tomsk, Russia. E-mail: [email protected]

Abstract

A high-current electron-beam accelerator for pumping of a Xe2 lamp was developed. It is intended for injection of an electron beam into cylindrical gas cavity (diameter of 400 mm, length of 1600 mm, and the absolute pressure up to 3 bars). Two electron diodes in parallel are used in the accelerator. Each diode is connected to a linear transformer driver with vacuum insulation of a secondary turn. The next parameters of the accelerator have been obtained: diode voltage — 550–600 kV, diode current — 276–230 kA, current rise time — 160 ns, maximum power of the electron beam — 130 GW, pulse width on half maximum — 160 ns, electron beam energy at power level not less than half of maximum value — 20 kJ. The total energy of electrons, which pass through a 40 µm Ti foil into the Xe cell, is 8–9 kJ in the 150–160 ns pulse (full width at half maximum) mean specific power of energy input into gas cavity is about 330 kW/cm3. Design of the accelerator and test results are presented and discussed in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastrikov, A.N., Vizir, V.A., Volkov, S.N., Durakov, V.G., Efremov, A.M., Zorin, V.B., Kim, A.A., Kovalchuk, B.M., Kumpyak, E.V., Loginov, S.V., Sinebryukhov, V.A., Tsou, N.V., Chervyakov, V.V., Yakovlev, V.P. & Mesyats, G.A. (2003). Primary energy storages based on Linear Transformer Stages. Laser Part. Beams 21, 295299.CrossRefGoogle Scholar
Divall, E.J., Edwards, C.B., Hirst, G.J., Hooker, C.J., Kidd, A.K., Lister, J.M.D., Mathumo, R., Ross, I.N., Shaw, M.J., Toner, W.T., Visser, A.P. & Wyborn, B.E. (1996). Titania – a 1020 W/cm2 ultraviolet laser J. Mod. Opt. 43, 10251033.Google Scholar
Eckstrom, D.J., Nakano, H.H., Lorents, D.C., Rothemb, T., Betts, J.A., Lainhart, M.E., Dakin, D.A. & Maenchenc, J.E. (1988). Characteristics of electron-beam-excited Xe2*at low pressures as a vacuum ultraviolet source. J. Appl. Phys. 64, 16791690.CrossRefGoogle Scholar
Humphries, S. Jr. (1986). Principles of Charged Particle Acceleration. New York: Wiley-Interscience, 283313.Google Scholar
Karasik, M., Weaver, J.L., Aglitskiy, Y., Watari, T., Arikawa, Y., Sakaiya, T., Oh, J., Velikovich, A.L., Zalesak, S.T., Bates, J.W., Obenschain, S.P., Schmitt, A.J., Murakami, M. & Azechi, H. (2010). Acceleration to high velocities and heating by impact using Nike KrF laser. Phys. Plasmas 17, 056317.CrossRefGoogle Scholar
Kim, A.A., Kovalchuk, B.M., Kumpyak, E.V. & Tsoy, N.V. (1999). Linear transformer driver with 750-kA current and 400-ns current risetime. Russian Phys. J. 42, 985.CrossRefGoogle Scholar
Kim, A.A., Mazarakis, M.G., Sinebryukhov, V.A., Kovalchuk, B.M., Visir, V.A., Volkov, S.N., Bayol, F., Bastrikov, A.N., Durakov, V.G., Frolov, S.V., Alexeenko, V.M., McDaniel, D.H., Fowler, W.E., LeChien, K., Olson, C., Stygar, W.A., Struve, K.W., Porter, J. & Gilgenbach, R.M. (2009). Development and tests of fast 1-MA linear transformer driver stages. Phys. Rev. ST Accel. Beams 12, 050402.CrossRefGoogle Scholar
Kovalchuk, B.M., Abdulin, E.N., Grishin, D.M., Gubanov, V.P., Zorin, V.B., Kim, A.A., Kumpyak, E.V., Morozov, A.V., Skakun, V.S., Stepchenko, A.S., Tarasenko, V.F., Tolkachev, V.S., Shanin, P.M. & Tsou, N.V. (2003). Linear transformer accelerator for the excimer laser. Laser Part. Beams, 21, 295299.CrossRefGoogle Scholar
Kovalchuk, B.M., Kharlov, A.V., Zherlitsyn, A.A., Kumpiak, E.V., Tsoy, N.V., Vizir, V.A. & Smorudov, G.V. (2009 a). 40 GW linear transformer driver stage for pulse generators of mega-ampere range. Laser Part. Beams 27, 371378.CrossRefGoogle Scholar
Kovalchuk, B.M., Kharlov, A.V., Zorin, V.B. & Zherlitsyn, A.A. (2009 b) Rev. Sci. Instrum. 80, 083504.CrossRefGoogle Scholar
Krasik, Ya.E., Yarmolich, D., Gleizer, J.Z., Vekselman, V., Hadas, Y., Gurovich, V.Tz. & Felsteiner, J. (2009). Pulsed plasma electron sources. Phys. Plasmas 16, 057103.CrossRefGoogle Scholar
Langmuir, I. & Blodgett, K. (1923). Currents limited by space charge between coaxial cylinders. Phys. Rev. 22, 347.CrossRefGoogle Scholar
Myers, M.C., Seething, J.D., Giuliani, J.L., Lehmberg, R., Kepple, P., Wolford, M.F., Hegeler, F., Friedman, M., Jones, T.C., Swanekamp, S.B., Weidenheimer, D. & Rose, D. (2004). Repetitively pulsed, high energy KrF lasers for inertial fusion energy. Nucl. Fusion. 44, S247.CrossRefGoogle Scholar
Roy, A., Menon, R., Mitra, S., Sharma, V., Singh, S.K., Nagesh, K.V. & Chakravarthy, D.P. (2009). Electron beam current in high power cylindrical diode. Phys. Plasmas, 17, 013103.Google Scholar
Sethian, J.D., Meyers, M., Smith, I.D., Carboni, V., Kishi, J., Morton, D., Pearce, J., Bowen, B., Schlitt, L., Barr, O. & Webster, W. (2000). Pulsed power for a rep-rate, electron beam pumped KrF laser. IEEE Trans. Plasma Sci. 28, 1333.CrossRefGoogle Scholar
Sethian, J.D., Obenschain, S.P., Gerber, K.A., Pawley, C.J., Serlin, V., Sullivan, C.A., Webster, W., Deniz, A.V., Lehecka, T., McGeoch, M.W., Altes, R.A., Corcoran, P.A., Smith, I.D. & Barr, O.C. (1997). Large area electron beam pumped krypton fluoride laser amplifier. Rev. Sci. Instrum. 68, 2357.CrossRefGoogle Scholar
Smith, I.D. (2004). Induction voltage adders and the induction accelerator family. Phys. Rev. ST Accel. Beams 7, 064801.CrossRefGoogle Scholar
Swanekamp, S.B., Commisso, R., Cooperstein, J.G., Ottinger, P.F. & Schumera, J.W. (2000). Particle-in-cell simulations of high-power cylindrical electron beam diodes. Phys. Plasmas 7, 5214.CrossRefGoogle Scholar
Tcheremiskine, V.I., Sentis, M.L. & Mikheev, L.D. (2002). Amplification of ultrashort laser pulses in the photolytically driven XeF(C-A) active medium. Appl. Phys. Lett. 81, 403.CrossRefGoogle Scholar
Zhang, Y., Liu, G., Yang, Z., Xing, Q., Shao, H., Xiao, R., Zhong, H. & Lin, Y. (2009). Simple solutions for relativistic generalizations of the Child-Langmuir law and the Langmuir-Blodgett law. Phys. Plasmas 16, 044511.CrossRefGoogle Scholar
Zherlitsyn, A.A., Kovalchuk, B.M. & Smorudov, G.V. (2009). Powerful femtosecond hybrid laser systems with wide aperture amplifiers on base of gas lasers. Instr. Exper. Techn. 52, 802.Google Scholar
Zvorykin, V.D., Ionin, A.A., Konyashchenko, A.V., Kovalchuk, B.M., Krokhin, O.N., Losev, V.F., Mesyats, G.A., Mikheev, L.D., Molchanov, , Novoselov, Yu.N., Seleznev, L.V., Sinitsyn, D.V., Starodub, A.N., Tarasenko, V.F. & Yakovlenko, S.I. (2008). Powerful femtosecond hybrid laser systems. Bull. Tamsk Polytechn. Univ. 311, 121.Google Scholar