Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T07:10:29.221Z Has data issue: false hasContentIssue false

Electron energy enhancement by a circularly polarized laser pulse in vacuum

Published online by Cambridge University Press:  06 October 2009

K.P. Singh*
Affiliation:
Department of Physics, MSJ College, Bharatpur, Rajasthan, India
D.N. Gupta
Affiliation:
Singh Simutech Pvt. Ltd., Bharatpur, Rajasthan, India
V. Sajal
Affiliation:
Department of Physics, Jaypee Institute of Information Technology University, Uttar Pradesh, India
*
Address correspondence and reprint requests to: Kunwar Pal Singh, Department of Physics, MSJ College, Bharatpur, Rajasthan, 321001, India. E-mail: [email protected]

Abstract

Energy enhancement by a circularly polarized laser pulse during acceleration of the electrons by a Gaussian laser pulse has been investigated. The electrons close to the temporal peak of the laser pulse show strong initial phase dependence for a linearly polarized laser pulse. The energy gained by the electrons close to the rising edge of the pulse does not show initial phase dependence for either linearly- or circularly-polarized laser pulse. The maximum energy of the electrons gets enhanced for a circularly polarized in comparison to a linearly polarized laser pulse due to axial symmetry of the circularly polarized pulse. The variation of electron energy with laser spot size, laser intensity, initial electron energy, and initial phase has been studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 25892592.CrossRefGoogle ScholarPubMed
Azizi, N., Hora, H., Miley, G.H., et al. (2009). Threshold for laser driven block ignition for fusion energy from hydrogen boron-11. Laser Part. Beams 27, 201206.CrossRefGoogle Scholar
Bahari, A. & Taranukhin, V.D. (2004). Laser acceleration of electrons in vacuum up to energies of ~109 eV. Quantum Electron. 34, 129134.CrossRefGoogle Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Yu.Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.CrossRefGoogle Scholar
Chen, P. (1985). A possible final focusing mechanism for linear colliders. Part. Accel. 20, 171182.Google Scholar
Dimitrov, D.A., Giacone, R.E., Bruhwiler, D.L., Busby, R., Cary, J.R., Geddes, C.G.R., Esarey, E. & Leemans, W.P. (2007). Coupling of laser energy into plasma channels. Phys. Plasmas 14, 043105.CrossRefGoogle Scholar
Esarey, E., Ride, S.K. & Sprangle, P. (1993). Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys. Rev. E 48, 30033021.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.CrossRefGoogle ScholarPubMed
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hartemann, F.V., Van Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C. Jr., Baldis, H.A., Gupta, A. & Kerman, A.K. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 58, 50015012.CrossRefGoogle Scholar
Hogan, M.J., Barnes, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., O'Connell, C.L., Oz, E., Siemann, R.H. & Walz, D. (2005). Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802.CrossRefGoogle Scholar
Hu, S.X. & Starace, A.F. (2006). Laser acceleration of electrons to giga-electron-volt energies using highly charged ions. Phys. Rev. E 73, 066502.CrossRefGoogle ScholarPubMed
Huang, C., Lu, W., Zhou, M., Clayton, C.E., Joshi, C., Mori, W.B., Muggli, P., Deng, S., Oz, E., Katsouleas, T., Hogan, M.J., Blumenfeld, I., Decker, F.J., Ischebeck, R., Iverson, R.H., Kirby, N.A. & Walz, D. (2007). Hosing instability in the blow-out regime for plasma-wakefield acceleration. Phys. Rev. Lett. 99, 255001.CrossRefGoogle ScholarPubMed
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, Cs., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Luttikhof, M.J.H., Khachatryan, A.G., Van Goor, F.A., Boller, K.-J. & Mora, P. (2009). Electron bunch injection at an angle into a laser wakefield. Laser Part. Beams 27, 6977.CrossRefGoogle Scholar
Malka, G., Lefebre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.CrossRefGoogle Scholar
Mangles, S., Murphy, C., Najmudin, Z., Thomas, A., Collier, J., Dangor, A., Divali, E., Foster, P., Gallacher, J., Hooker, C., Jaroszynski, D., Langley, A., Mori, W., Norreys, P., Tsung, F., Viskup, R., Walton, B. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nat. 431, 535538.CrossRefGoogle ScholarPubMed
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. 377, 606608.CrossRefGoogle Scholar
Moore, C.I., Ting, A., McNaught, S.J., Qiu, J., Burris, H.R. & Sprangle, P. (1999). A Laser-accelerator injector based on laser ionization and ponderomotive acceleration of electrons. Phys. Rev. Lett. 82, 16881691.CrossRefGoogle Scholar
Mora, P. & Quesnel, B. (1998). Comment on “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser.” Phys. Rev. Lett. 80, 13511354.CrossRefGoogle Scholar
Najmudin, Z., Krushelnick, K., Clark, E.L., Mangles, S.P.D., Walton, B., Dangor, A.E., Fritzler, S., Malka, V., Lefebvre, E., Gordon, D., Tsung, F.S. & Joshi, C. (2003). Self-modulated wakefield and forced laser wakefield acceleration of electrons. Phys. Plasmas 10, 20712077.CrossRefGoogle Scholar
Nakamura, K., Nagler, B., Tóth, Cs., Geddes, C.G.R., Schroeder, C.B., Esarey, E., Leemans, W.P., Gonsalves, A.J. & Hooker, S.M. (2007). GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator. Phys. Plasmas 14, 056708.CrossRefGoogle Scholar
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.CrossRefGoogle Scholar
Sakai, K., Miyazaki, S., Kawata, S., Hasumi, S. & Kikuchi, T. (2006). High-energy-density attosecond electron beam production by intense short-pulse laser with a plasma separator. Laser Part. Beams 24, 321327.CrossRefGoogle Scholar
Sazegari, V., Mirzaie, M. & Shokri, B. (2006). Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with a tenuous plasma. Phys. Plasmas 13, 033102.CrossRefGoogle Scholar
Shvets, G., Fisch, N.J. & Pukhov, A. (2002). Excitation of accelerating plasma waves by counter-propagating laser beams. Phys. Plasmas 9, 23832392.CrossRefGoogle Scholar
Singh, K.P. (2004). Laser induced electron acceleration in vacuum, Phys. Plasmas 11, 11641167.CrossRefGoogle Scholar
Singh, K.P., Sajal, V. & Gupta, D.N. (2008). Quasi-monoenergetic GeV electrons from the interaction of two laser pulses with a gas. Laser Part. Beams 26, 597604.CrossRefGoogle Scholar
Sprangle, P., Hafizi, B., Peñano, J., Hubbard, R., Ting, A., Moore, C., Gordon, D., Zigler, A., Kaganovich, D. & Antonsen, T. Jr. (2002). Wakefield generation and GeV acceleration in tapered plasma channels. Phys. Rev. E 63, 056405.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267281.CrossRefGoogle Scholar
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007 a). Vacuum laser acceleration in circularly polarized fields. J. Phys. D: Appl. Phys 40, 24642471.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007 b). Polarization effect of fields on vacuum laser acceleration. Laser Part. Beams 25, 253257.CrossRefGoogle Scholar