Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T12:36:25.108Z Has data issue: false hasContentIssue false

Electron acceleration in underdense plasmas described with a classical effective theory

Published online by Cambridge University Press:  23 April 2015

M. A. Pocsai*
Affiliation:
Wigner Research Centre for Physics of the Hungarian Academy of Sciences Konkoly–Thege Miklós út 29-33, Budapest, Hungary
S. Varró
Affiliation:
Wigner Research Centre for Physics of the Hungarian Academy of Sciences Konkoly–Thege Miklós út 29-33, Budapest, Hungary ELI-HU Nonprofit Ltd, Szeged, Hungary
I. F. Barna
Affiliation:
Wigner Research Centre for Physics of the Hungarian Academy of Sciences Konkoly–Thege Miklós út 29-33, Budapest, Hungary ELI-HU Nonprofit Ltd, Szeged, Hungary
*
Address correspondence and reprint requests to: M. A. Pocsai, Wigner Research Centre for Physics of the Hungarian Academy of Sciences Konkoly–Thege Miklós út 29-33, H-1121 Budapest, XII, Hungary. E-mail: [email protected]

Abstract

An effective theory of laser–plasma-based particle acceleration is presented. Here we treated the plasma as a continuous medium with an index of refraction nm in which a single electron propagates. Because of the simplicity of this model, we did not perform particle-in-cell (PIC) simulations in order to study the properties of the electron acceleration. We studied the properties of the electron motion due to the Lorentz force and the relativistic equations of motion were numerically solved and analyzed. We compared our results with PIC simulations and experimental data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I.A. (1972). Handbook of Mathematical Functions, Applied Mathematics Series, 10 edn, vol. 55, chapter 7. Washington, DC: U.S. Government Printing Office. (Equations (7.3.1)–(7.3.4)).Google Scholar
Cheng, Y. & Xu, Z. (1999). Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge. Appl. Phys. Lett. 74, 21162118.CrossRefGoogle Scholar
Davis, L.W. (1979). Theory of electromagnetic beams. Phys. Rev. A 19, 11771179.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T. & Adam, J.C. (2002). OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Computational Science – ICCS 2002, Lecture Notes in Computer Science, vol. 2331 (Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K. and Dongarra, J.J., Eds.), pp. 342351. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C.B., Cary, J. & Leemans, W.P. (2005). Guiding of relativistic laser pulses by preformed plasma channels. Phys. Rev. Lett. 95, 145002 (pages 4).CrossRefGoogle ScholarPubMed
Gonsalves, A.J., Nakamura, K., Lin, C., Panasenko, D., Shiraishi, S., Sokollik, T., Benedetti, C., Schroeder, C., Geddes, C.G.R., van Tilborg, J., Osterhoff, J., Esarey, E., Toth, C. & Leemans, W.P. (2011). Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 7, 862866.CrossRefGoogle Scholar
Kneip, S., Nagel, S.R., Martins, S.F., Mangles, S.P.D., Bellei, C., Chekhlov, O., Clarke, R.J., Delerue, N., Divall, E.J., Doucas, G., Ertel, K., Fiuza, F., Fonseca, R., Foster, P., Hawkes, S.J., Hooker, C.J., Krushelnick, K., Mori, W.B., Palmer, C.A.J., Phuoc, K.T., Rajeev, P.P., Schreiber, J., Streeter, M.J.V., Urner, D., Vieira, J., Silva, L.O. & Najmudin, Z. (2009). Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103, 035 002.Google ScholarPubMed
Lax, M., Louisell, W.H. & McKnight, W.B. (1975). From Maxwell to paraxial wave optics. Phys. Rev. A 11, 13651370.CrossRefGoogle Scholar
Lifschitz, A., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.P., Scheurer, J.N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.CrossRefGoogle ScholarPubMed
Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M. & Tajima, T. (1995). Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74, 44284431.CrossRefGoogle ScholarPubMed
Pocsai, M.A. (2014). Részecskegyorsítás lézerrel. Master's thesis. Roland Eötvös University. http://www.kfki.hu/~pocsai/diplomamunka.pdf.Google Scholar
Pukhov, A. & Meyer-ter Vehn, J. (2002). Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.CrossRefGoogle Scholar
Rosenzweig, J.B., Breizman, B., Katsouleas, T. & Su, J.J. (1991). Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189R6192.CrossRefGoogle ScholarPubMed
Sohbatzadeh, F. & Aku, H. (2011). Polarization effect of a chirped faussian laser pulse on the electron bunch acceleration. J. Plasma Phys. 77, 3950.CrossRefGoogle Scholar
Sohbatzadeh, F., Mirzanejhad, S. & Ghasemi, M. (2006). Electron acceleration by a chirped Gaussian laser pulse in vacuum. Phys. Plasmas 13, 123108.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Varró, S. (2007). Linear and nonlinear absolute phase effects in interactions of ulrashort laser pulses with a metal nano-layer or with a thin plasma layer. Laser Part. Beams 25, 379390.CrossRefGoogle Scholar
Varró, S. (2014). New exact solutions of the Dirac and Klein–Gordon equations of a charged particle propagating in a strong laser field in an underdense plasma. Nucl. Instrum. Methods Phys. Res. A 740, 280283. Proc. of the First European Advanced Accelerator Concepts Workshop 2013.CrossRefGoogle Scholar
Varró, S. & Farkas, G. (2008). Attosecond electron pulses from interference of above-threshold de Broglie waves. Laser Part. Beams 26, 920.CrossRefGoogle Scholar
Varró, S. & Kocsis, G. (1992). Classical motion of a charged particle in the presence of a static, homogenous magnetic field and a linearly frequency shifted electromagnetic planewave. http://accelconf.web.cern.ch/AccelConf/e92/PDF/EPAC1992_0964.PDF.Google Scholar
Vieira, J. & Mendonça, J.T. (2014). Nonlinear laser driven donut wakefields for positron and electron acceleration. Phys. Rev. Lett. 112, 215001 (pages 5).CrossRefGoogle Scholar
Wang, J., Scheid, W., Hoelss, M. & Ho, Y. (2000). Electron acceleration by intense shock-like laser pulses in vacuum. Phys. Lett. A 275, 323328.CrossRefGoogle Scholar
Wang, J.X., Ho, Y.K., Feng, L., Kong, Q., Wang, P.X., Yuan, Z.S. & Scheid, W. (1999). High-intensity laser-induced electron acceleration in vacuum. Phys. Rev. E 60, 74737478.CrossRefGoogle ScholarPubMed
Xia, G., Caldwell, A., Huang, C. & Mori, W.B. (2011). Simulation study on proton-driven PWFA based on CERN SPS beam. In Proc. of 2011 Particle Accelerator Conf., New York, NY, USA, pp. 301–303.Google Scholar