Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:39:33.921Z Has data issue: false hasContentIssue false

Electron acceleration by whistler pulse in high-density plasma

Published online by Cambridge University Press:  30 May 2017

A.K. Singh*
Affiliation:
Department of Physics, G L Bajaj Group of Institution Mathura, India
*
Address correspondence and reprint requests to: A.K. Singh, Department of Physics, G L Bajaj Group of Institution Mathura, India. E-mail: [email protected]

Abstract

The acceleration of an electron by the ponderomotive force of a Gaussian whistler pulse in a magnetized high-density quantum plasma obeying Fermi–Dirac distribution is studied using the recently developed quantum hydrodynamic model. Effective acceleration takes place when the peak whistler amplitude exceeds a threshold value, and the whistler frequency is greater than the cyclotron frequency. The threshold amplitude decreases with ratio of plasma frequency to electron cyclotron frequency. The electron is accelerated at velocities of about twice the group velocity of the whistler.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brodin, G. & Lundberg, J. (1998). Excitation of electromagnetic wake fields in a magnetized plasma. Phys. Rev. E 57, 704130.CrossRefGoogle Scholar
Caldwell, A., Lotov, K., Pukho, A. & Simon, F. (2009). Proton-driven plasma-wakefield acceleration. Nat. Phys. 5, 363.Google Scholar
Chen, P., Tajima, T. & Takahashi, Y. (2002). Plasma wakefield acceleration for ultrahigh-energy cosmic rays. Phys. Rev. Lett. 89, 161101.Google Scholar
Chen, P., Chang, F.Y., Lin, G.L., Noble, R.J. & Sydora, R. (2009). A new type of plasma wakefield accelerator driven by magnetowaves. Phys. Control. Fusion 51, 024012.Google Scholar
Crouseilles, N., Hervieux, P.A. & Manfredi, G. (2008). Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412.Google Scholar
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-Ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772.Google Scholar
Gardner, C.L. & Ringhofer, C. (1996). Smooth quantum potential for the hydrodynamic model. Phys. Rev. E. 53, 157.Google Scholar
Haas, F., Garcia, L.G., Goedert, J. & Manfredi, G. (2003). Quantum ion-acoustic waves. Phys. Plasmas 10, 3858.Google Scholar
Joshi, C. (2007). The development of laser- and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.Google Scholar
Kalmykov, S., Yi, S.A. & Shvets, G. (2009). All-optical control of nonlinear focusing of laser beams in plasma beat wave accelerator. Plasma Phys. Control. Fusion 51, 024011.CrossRefGoogle Scholar
Karpman, V.I., Hansen, F.R., Huld, T., Lynov, J.P., Pecseli, H.L. & Rasmussen, J. (1990). Nonlinear evolution of the modulational instability of whistler waves. Phys. Rev. Lett. 64, 890.Google Scholar
Karpman, V.I. & Washimi, H. (1977). Two-dimensional self-modulation of a whistler wave propagating along the magnetic field in a plasma. J. Plasma Phys. 18, 173.Google Scholar
Kumar, P. & Tewari, C. (2012). Electric, magnetic wakefields, and electron acceleration in quantum plasma. Laser Part. Beam 30, 267273.Google Scholar
Liu, C.S. & Tripathi, V.K. (2005). Ponderomotive effect on electron acceleration by plasma wave and betatron resonance in short pulse laser. Phys. Plasmas 12, 043103.CrossRefGoogle Scholar
Morandi, O., Zamanian, J., Manfredi, G. & Hervieux, P. (2014). Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light. Phys. Rev. E 90, 013103.Google Scholar
Rao, N.N. (1988). Theory of near-sonic envelope electromagnetic waves in magnetized plasmas. Phys. Rev. A 37, 4846.Google Scholar
Sazegari, V., Mirzaie, M. & Shokri, B. (2006). Ponderomotive acceleration of injected electrons in tenuous plasmas by intense laser pulses. Phys. Plasmas 13, 033.Google Scholar
Schlenvoigt, H.P., Haupt, K., Debus, A., Budde, F., Jackel, O., Protenhauer, S., Schwoerer, H., Rohwer, E., Gallacher, J.G., Brunetti, E., Shank, R.P., Wiggins, S.M. & Jaroszynski, D.A. (2008). A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130.Google Scholar
Shukla, P.K. (1978). Relation between monthly variations of global ozone and solar activity. Nature (London) 274, 874.Google Scholar
Shukla, P.K. (2009). Generation of wakefields by electromagnetic waves in a magnetized electron – positron – ion plasma. Plasma Phys. Control. Fusion 51, 024013.Google Scholar
Shukla, P.K. & Akbari-Maghananghi, M. (2012). Comment on ‘quantum plasma: a peal for a common sense’. EPL 99, 65001.Google Scholar
Shukla, P.K. & Eliassion, B. (2010). Nonlinear aspects of quantum plasma physics. Phys.-Usp., 53, 51.Google Scholar
Shukla, P.K. & Eliasson, B. (2006). Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys. Rev. Lett. 96, 245001.CrossRefGoogle ScholarPubMed
Shukla, P.K. & Stenflo, L. (1984). Nonlinear propagation of electromagnetic waves in magnetized plasmas. Phys. Rev. A 30, 2110.Google Scholar
Singh, R. & Sharma, A.K. (2010). Ponderomotive acceleration of electrons by a whistler pulse. Appl. Phys. B 100, 535538.Google Scholar
Spatschek, K.H., Shukla, P.K., Yu, M.Y. & Karpman, V.I. (1979). Finite amplitude localized whistler waves. Phys. Fluids 22, 576.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Tochitsky, S.Y., Narang, R., Filip, C.V., Musumeci, P., Clayton, C.E., Yoder, R.B., Marsh, K.A., Rosenzweig, J.B., Pellegrini, C. & Joshi, C. (2004). Enhanced acceleration of injected electrons in a laser-beat-wave induced plasma channel. Phys. Rev. Lett. 92, 095004.Google Scholar
Tsakiris, G.D., Gahn, C. & Tripathi, V.K. (2000). Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7, 3017.Google Scholar
Zhao, J.S., Lu, J.Y. & Wu, D.J. (2010). Observation of anisotropic scaling of solar wind turbulence. Astro Phys. J. 714, 138.CrossRefGoogle Scholar
Zhidkov, J., Fujii, T. & Nemoto, K. (2008). Electron self-injection during interaction of tightly focused few cycle laser pulses with underdense plasma. Phys. Rev. E 78, 036406.Google Scholar