Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T08:35:05.596Z Has data issue: false hasContentIssue false

Electric, magnetic Wakefields, and electron acceleration in quantum plasma

Published online by Cambridge University Press:  09 March 2012

P. Kumar*
Affiliation:
Department of Physics, University of Lucknow, Lucknow, India
C. Tewari
Affiliation:
Department of Physics, University of Lucknow, Lucknow, India
*
Address correspondence and reprint requests to: Punit Kumar, Department of Physics, University of Lucknow, Indiranagar, Lucknow-226016, India. E-mails: [email protected]; [email protected]

Abstract

A detailed study of Wakefield excitation in very dense quantum plasma is presented. Electric and magnetic Wakefields have been obtained for a particular profile of the laser pulse, using perturbative technique involving orders of the incident laser beam. The Wakefields can trap electrons and accelerate them to extremely high energies. It is observed that the quantum effects significantly change the classical nature of the Wakefield. The axial and radial forces acting on a test electron due to the Wakefields have been evaluated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, N.E., Gorbunov, L.M., Kirsonov, V. I. & Pegosova, A.A. (1994). Laser Wakefield accelerator in a plasma pipe with self-modulation of the laser pulse. JETP Lett. 60, 713717.Google Scholar
Balakirev, V.A., Karas, V.I. & Levchenko, V.D. (2001). Plasma Wakefield excitation by relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.CrossRefGoogle Scholar
Bialynicki-Birula, L., Gornicki, P. & Rafelski, J. (1991). Phase-space structures of the Dirac vacuum. Phys. Rev. D 44, 18251835.Google Scholar
Blumenfeld, I., Clayton, C.E., Decker, F.J., Hogan, M.J., Huang, C., Ischebeck, R., Iverson, R., Joshi, C., Katsouleas, T., Kirby, N., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., Oz, E., Siemann, R.H., Walz, D. & Zhou, M. (2007). Energy doubling of 42 GeV electrons in a metre-scale plasma Wakefield accelerator. Nat. 445, 741744.Google Scholar
Bret, A. (2007). Filamentation instability in a quantum plasma. Phys. Plasmas 14, 084503.Google Scholar
Cao, J., Ren, H., Wu, Z. & Chu, P.K. (2008). Quantum effects on Rayleigh-Taylor instability in magnetized plasma. Phys. Plasmas 15, 012110.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Elec. 33, 18791914.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.Google Scholar
Gardner, C.L. & Ringhofer, C. (1996). Smooth quantum potential for the hydrodynamic model. Phys. Rev. E 53, 157167.Google Scholar
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser Wakefield accelerator using plasma-channel guiding. Nat. 431, 538540.Google Scholar
Gorbunov, L.M., Mora, P. & Solodov, A.A. (2003). Dynamics of a plasma channel created by the Wakefield of a short laser pulse. Phys. Plasmas 10, 11241134.CrossRefGoogle Scholar
Harding, A.K. & Lai, D. (2006). Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 26312706.Google Scholar
Jha, P., Kumar, P., Upadhyaya, A.K. & Raj, G. (2005). Electric and magnetic Wakefields in a plasma channel. Phys. Rev. Sp. Topics-Accel. Beams 8, 071301.Google Scholar
Joshi, C. (2007). The development of laser-and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.CrossRefGoogle Scholar
Jung, Y.D. (2001). Quantum mechanical effects on electron-electron scattering in dense high-temperature plasmas. Phys. Plasmas 8, 38423844.Google Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakashima, K., Masuda, S., Ho, Y.K., Miyanakga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of intense short-pulse laser. Laser Part. Beams 23, 6168.Google Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 6168.CrossRefGoogle Scholar
Kremp, D., Bornath, T.H., Bonitz, M. & Schlanges, M. (1999). Quantum kinetic theory of plasmas in strong laser fields. Phys. Rev. E 60, 47254732.Google Scholar
Leemans, W.P., Nager, B., Gonsalves, A.J., Toth, C., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimeter-scale accelerator. Nat. Phys. 2, 696699.Google Scholar
Lifshitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255260.Google Scholar
Lotov, K.V. (2001). Laser Wakefield acceleration in narrow plasma-filled channels. Laser Part. Beams 26, 225234.Google Scholar
Lourenco, S., Nicolas, K., Werner, S. & Wang, P.X. (2010). Acceleration of electrons and electromagnetic fields of highly intense laser pulses. Laser Part. Beams 28, 195201.Google Scholar
Luttikhof, M.J.H., Khachatryan, A.G., Van Goor, F.A., Boller, K.-J. & Mora, P. (2009). Electron bunch injection at an angle into a laser Wakefield. Laser Part. Beams 27, 6977.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Sci. 298, 15961600.Google Scholar
Maltis, N.H., Reed, S., Bulanov, S.S., Chvykov, V., Kalintchenko, G., Matsuoka, T., Rousseau, P., Yanovsky, V., Maksimchuk, A., Kalmykov, S., Shvets, G. & Downer, M.C. (2006). Snapshots of laser Wakefields. Nat. Phys. 2, 749753.Google Scholar
Manfredi, G. (2005). How to model quantum plasmas. Fields Inst. Comm. 46, 263287.Google Scholar
Mangels, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hoker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nat. 431, 535537.Google Scholar
Markowich, P.A., Ringhofer, C. & Schmeiser, C. (1990). Semiconductor Equations. Vienna: Springer.Google Scholar
Marques, J.R., Geindre, J.P., Amiranoff, F., Audebert, P., Gauthier, J.C., Antonetti, A. & Grillon, G. (1996). Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse. Phys. Rev. Lett. 76, 35663569.CrossRefGoogle ScholarPubMed
Masuda, S. & Miura, E. (2009). Generation and analysis of quasimonoenergetic electron beams by laser-plasma interaction in traditional region from the self-modulated laser Wakefield to bubble accelerator regime. Phys. Plasmas 16, 093105.Google Scholar
Phouc, K.T., Corde, S., Fitour, R., Shah, R., Albert, F., Rousseau, J.P., Burgy, F., Rousse, A., Seredov, V. & Pukhov, A. (2008). Analysis of Wakefield electron orbits in plasma wiggler. Phys. Plasmas, 15, 073106.Google Scholar
Pukhov, A. & Meyer-Ter-Vehn, J. (2002). Laser Wakefield acceleration: The highly non-linear broken wave regime. Appl. Phys. B: Lasers Opt. 74, 355361.Google Scholar
Schlenovoigt, H.P., Haupt, K., Debus, A., Budde, F, Jackel, O., Pfotenhauer, S., Schwoerer, H., Rohwer, E., Gallacher, J.G., Brunetti, E., Shanks, R.P., Wiggins, S.M. & Jaroszynski, D.A. (2008). Compact synclotron radiation source driven by a laser-plasma Wakefield accelerator. Nat. Phys. 4,130133.CrossRefGoogle Scholar
Shin, G. (1996). The derivation of hydrodynamic equation from quantum field theory. J. Korean Phys. Soc. 29, 571574.Google Scholar
Shukla, P.K., Brodin, G., Marklund, M. & Stenflo, L. (2009). Excitation of multiple Wakefields by short laser pulses in quantum plasmas. Phys. Lett. A 373, 31653168.Google Scholar
Siders, C.W., Le Blane, S.P., Fisher, D., Tajima, T., Downer, M.C., Babine, A., Stepanov, & Sergreev, A. (1996). Laser Wakefield excitation and measurement by Femtosecond longitudinal interferometry. Phys. Rev. Lett. 76, 35703573.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Takahashi, E., Honda, H., Miura, E., Yugami, N., Nishida, Y., Katsura, K. & Kondo, K. (2004). Observation of spatial asymmetry of THz oscillating electron plasma wave in a laser Wakefield. Phys. Rev. E 62, 72477250.Google Scholar
Wang, W.-M., Sheng, Z.-M. & Zhang, J. (2009). Electron injection into laser Wakefields by colliding circularly-polarized laser pulses. Laser Part. Beams 27, 37.CrossRefGoogle Scholar
Xie, B.-S., Aimidula, A., Niu, J.-S, Liu, J. & Yu, M.Y. (2009). Electron acceleration in the Wakefield of asymmetric laser pulses. Laser Part. Beams 27, 2732.Google Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.Google Scholar