Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T19:59:12.763Z Has data issue: false hasContentIssue false

Efficient aberrations pre-compensation and wavefront correction with a deformable mirror in the middle of a petawatt-class CPA laser system

Published online by Cambridge University Press:  17 December 2007

F. Canova*
Affiliation:
Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique-CNRSUMR 7639, Chemin de la Hunière, Palaiseau CEDEX, France
A. Flacco
Affiliation:
Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique-CNRSUMR 7639, Chemin de la Hunière, Palaiseau CEDEX, France
L. Canova
Affiliation:
Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique-CNRSUMR 7639, Chemin de la Hunière, Palaiseau CEDEX, France
R. Clady
Affiliation:
Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique-CNRSUMR 7639, Chemin de la Hunière, Palaiseau CEDEX, France
J.-P. Chambaret
Affiliation:
Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique-CNRSUMR 7639, Chemin de la Hunière, Palaiseau CEDEX, France
F. PlÉ
Affiliation:
Laboratoire d'interaction du rayonnement X avec la matière (LIXAM), UMR 8624, Orsay, France
M. Pittman
Affiliation:
Laboratoire d'interaction du rayonnement X avec la matière (LIXAM), UMR 8624, Orsay, France
T.A. Planchon
Affiliation:
Colorado School of Mines, Department of Physics, Golden, Colorado
M. Silva
Affiliation:
Dipartimento di Fisica G. Occhialini, Università Milano-Bicocca, Milano, Italy
R. Benocci
Affiliation:
Dipartimento di Fisica G. Occhialini, Università Milano-Bicocca, Milano, Italy
G. Lucchini
Affiliation:
Dipartimento di Fisica G. Occhialini, Università Milano-Bicocca, Milano, Italy
D. Batani
Affiliation:
Dipartimento di Fisica G. Occhialini, Università Milano-Bicocca, Milano, Italy
E. Lavergne
Affiliation:
Imagine Optic, Orsay, France
G. Dovillaire
Affiliation:
Imagine Optic, Orsay, France
X. Levecq
Affiliation:
Imagine Optic, Orsay, France
*
Address correspondence and reprint requests to: Federico Canova, Laboratoire d'Optique Appliquée, ENSTA-Ecole Polytechnique-CNRSUMR 7639, Chemin de la Hunière, 91761 Palaiseau CEDEX, France. E-mail: [email protected]

Abstract

In this paper, we describe the experimental validation of the technique of correction of wavefront aberration in the middle of the laser amplifying chain. This technique allows the correction of the aberrations from the first part of the laser system, and the pre-compensation of the aberrations built in the second part. This approach will allow an effective aberration management in the laser chain, to protect the optical surfaces and optimize performances, and is the only possible approach for multi-petawatt laser system from the technical and economical point of view. This approach is now possible after the introduction of new deformable mirrors with lower static aberrations and higher dynamic than the standard devices.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anwar, M.S., Latif, A., Iqbal, M., Rafique, M.S., Khaleeq-Ur-Rahman, M. & Siddique, S. (2006). Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part. Beams 24, 347353.CrossRefGoogle Scholar
Bahk, S.-W., Rousseau, P., Planchon, T.A., Chvykov, V., Kalintchenko, G., Maksimchuk, A. & Mourou, G. (2004). Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29, 2837.CrossRefGoogle ScholarPubMed
Canova, F., Chambaret, J.-P., Mourou, G., Uteza, O., Delaporte, P., Itina, T., Natoli, J.-Y., Commandre, M. & Amra, C. (2005). Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond, and femtosecond laser pulses. Proc. SPIE 5991, 599123.CrossRefGoogle Scholar
Chenais, S., Druon, F., Balembois, F., Lucas-Leclin, G., Fichot, Y., Georges, P., Gaume, R., Viana, B., Aka, G.P. & Vivien, D. (2003). Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW, Opt. Mat. 22, 129137.CrossRefGoogle Scholar
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, J.L., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Fisher, D.V., Henis, Z., Eliezer, S., & Meyer-Ter-Vehn, J. (2006). Core holes, charge disorder, and transition from metallic to plasma properties in ultrashort pulse irradiation of metals. Laser Part. Beams 24, 8194.CrossRefGoogle Scholar
Flippo, K, Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuerbach, A., Fernandez, A., Apolonski, A., Fuji, T. & Krausz, F. (2005). Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses. Laser Part. Beams 23, 113116.CrossRefGoogle Scholar
Gauthier, J.-C., Amiranoff, F., Chenais-Popovics, C., Jamelot, G., Koenig, M., Labaune, C., Leboucher-Dalimier, E., Sauteret, C. & Migus, A. (1999). LULI activities in the field of high-power laser–matter interaction. Laser Part. Beams 17, 195208.CrossRefGoogle Scholar
Kalashnikov, M., Osvay, K. & Sandner, W. (2007). High-power Ti:Sapphire lasers: Temporal contrast and spectral narrowing. Laser Part. Beams 25, 219223.CrossRefGoogle Scholar
Morice, O. (2003). MIRO: Complete modeling and software for pulse amplification and propagation in high-power laser systems. Opt. Engin. 42, 15301541.CrossRefGoogle Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Osvay, K., Csatari, M., Ross, I.N., Persson, A. & Wahlstrom, C.G. (2005). On the temporal contrast of high intensity femtosecond laser pulses. Laser Part. Beams 23, 327332.CrossRefGoogle Scholar
Ozaki, T., Kieffer, J.C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101106.CrossRefGoogle Scholar
Petrov, Y.V. (2005). Energy exchange between the lattice and electrons in a metal under femtosecond laser irradiation. Laser Part. Beams 23, 283289.CrossRefGoogle Scholar
Pittman, M., Ferré, S., Rousseau, J.-P., Notebaert, L., Chambaret, J.-P. & Chériaux, G. (2002). Design and characterization of near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system, Appl. Phys. B Lasers Opt. 74, 529535.CrossRefGoogle Scholar
Planchon, T.A., Rousseau, J.-P., Burgy, F., Chériaux, G. & Chambaret, J.-P. (2005). Adaptive wavefront correction on a 100-TW/10-Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation. Opt. Commun. 252, 222228.CrossRefGoogle Scholar
Planchon, T., Mercère, P., Cheriaux, G. & Chambaret, J-P. (2003). Off-axis aberration compensation of focusing with spherical mirrors using deformable mirrors. Opt. Commun. 2164, 2531.CrossRefGoogle Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219.CrossRefGoogle Scholar
Wu, H.C., Sheng, Z.M., Zhang, Q.J., Cang, Y. & Zhang, J. (2005). Controlling ultrashort intense laser pulses by plasma Bragg gratings with ultrahigh damage threshold. Laser Part. Beams 23, 417421.CrossRefGoogle Scholar