Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T07:57:01.770Z Has data issue: false hasContentIssue false

Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime

Published online by Cambridge University Press:  05 January 2011

K.H. Pae
Affiliation:
Advanced Photonics Research Institute, GIST, Buk-gu, Gwangju, Korea
I.W. Choi
Affiliation:
Advanced Photonics Research Institute, GIST, Buk-gu, Gwangju, Korea
J. Lee*
Affiliation:
Advanced Photonics Research Institute, GIST, Buk-gu, Gwangju, Korea
*
Address correspondence and reprint requests to: J. Lee, Advanced Photonics Research Institute, GIST, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Korea. E-mail: [email protected]

Abstract

The characteristics of high energy protons generated from thin carbon-proton mixture targets via circularly polarized intense laser pulses are investigated using two-dimensional particle-in-cell simulations. It is found that the density ratio n between protons and carbon ions plays a key role in determining the acceleration dynamics. For low n values, the protons are mainly accelerated by the radiation pressure acceleration mechanism, resulting in a quasi-monoenergetic energy spectrum. The radiation pressure acceleration mechanism is enhanced by the directed-Coulomb-explosion of carbon ions which gives a high proton maximum energy, though a large energy spread, for high n values. From a proton acceleration point of view, the role of heavy ions is very important. The fact that the proton energy spectrum is controllable based on the target composition is especially useful in real experimental environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.Google Scholar
Bulanov, S.S., Brantov, A., Bychenkov, V.Yu., Chvykov, V., Kalinchenko, G., Matsuoka, T., Rousseau, P., Reed, S., Yanovsky, V., Litzenberg, D.W., Krushelnick, K. & Maksimchuk, A. (2008). Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Phys. Rev. E 78, 026412.Google Scholar
Chen, M., Pukhov, A., Sheng, Z.M. & Yan, X.Q. (2008). Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets. Phys. Plasmas 15, 113103.Google Scholar
Chen, M., Pukhov, A., Yu, T.P. & Sheng, Z.M. (2009). Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse. Phys. Rev. Lett. 103, 024801.CrossRefGoogle ScholarPubMed
Esirkepov, T.Zh., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003.CrossRefGoogle ScholarPubMed
Grech, M., Skupin, S., Nuter, R., Gremillet, L. & Lefebvre, E. (2009). High-quality ion beams by irradiating a nano-structured target with a petawatt laser pulse. New J. Phys. 11, 093035.CrossRefGoogle Scholar
Henig, A., Steinke, S., Schnüer, M., Sokollik, T., Hörlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-Ter-Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.CrossRefGoogle ScholarPubMed
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys Rev. ST Accel. Beams. 11, 031301.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Macchi, A., Veghini, S. & Pegoraro, F. (2009). “Light Sail” acceleration reexamined. Phys. Rev. Lett. 103, 085003.Google Scholar
Pegoraro, F. & Bulanov, S.V. (2007). Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. Phys. Rev. Lett. 99, 065002.CrossRefGoogle Scholar
Robinson, A.P.L., Bell, A.R. & Kingham, R.J. (2006). Effect of target composition on proton energy spectra in ultraintense laser-solid interactions. Phys. Rev. Lett. 96, 035005.Google Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.CrossRefGoogle Scholar
Rykovanov, S.G., Schreiber, J., Meyer-Ter-Vehn, J., Bellei, C., Henig, A., Wu, H.C. & Geissler, M. (2008). Ion acceleration with ultra-thin foils using elliptically polarized laser pulses. New J. Phys. 10, 113005.Google Scholar
Tripathi, V.K., Liu, C.S., Shao, X., Eliasson, B. & Sagdeev, R.Z. (2009). Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil. Plasma Phys. Contr. Fusion 51, 024014.CrossRefGoogle Scholar
Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., Lu, Y.R., Fang, J.X. & Chen, J.E. (2008). Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003.Google Scholar
Yan, X.Q., Wu, H.C., Sheng, Z.M., Chen, J.E. & Meyer-Ter-Vehn, J. (2009). Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7 × 1021 W/cm2. Phys. Rev. Lett. 103, 135001.Google Scholar
Yu, T.P., Chen, M. & Pukhov, A. (2009). High quality GeV proton beams from a density-modulated foil target. Laser Part. Beams 27, 611617.Google Scholar