Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T20:04:01.912Z Has data issue: false hasContentIssue false

Effect of plasma channel non-uniformity on resonant third harmonic generation

Published online by Cambridge University Press:  29 July 2013

Anuraj Panwar
Affiliation:
Department of Physics, POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang, South Korea, 790-784
Chang-Mo Ryu*
Affiliation:
Department of Physics, POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang, South Korea, 790-784
Ashok Kumar
Affiliation:
Physics Department, ATAS, ASET, Amity University, Noida, Uttar Pradesh 201303, India
*
Address correspondence and reprint requests to: Chang-Mo Ryu, Department of Physics, POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang, South Korea, 790-784. E-mail: [email protected]

Abstract

We study the generation of resonant third harmonic laser radiation in a density non-uniform rippled plasma channel. An introduction of plasma channel non-uniformity strongly enhances the self-focusing and compression of main laser pulse at lower powers. In a deeper plasma channel, self-focusing is less sensitive to laser amplitude variation but increases compression. Plasma density ripple ‘nq’ leading to resonant third harmonic generation when kq = 4ω2p/3meω0cγ0, where ‘ω’p is electron plasma frequency, ‘ω0’ is laser frequency, and ‘γ0’ is the electron Lorentz factor. Third harmonic is produced through the beating of ponderomotive force induced second harmonic density oscillations and the oscillatory velocity of electrons at main laser frequency. The self-focusing and compression of the fundamental pulse periodically enhances the intensity of the third-harmonic pulse at lower powers of main laser. In a deeper plasma channel, the third harmonic power is less effective by self-focusing and the compression of main laser, and increase with main laser pulse power.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R. (1966). Sov. Phys. JETP 23, 1025.Google Scholar
Chen, S.-Y., Maksimchuk, A., Esarey, E. & Um- stadter, D. (2000). Observation of phase-matched relativistic harmonic generation. Phys. Rev. Lett. 84, 55285531.CrossRefGoogle ScholarPubMed
Dahiya, D., Sajal, V. & Sharma, A.K. (2007). Phase- matched second- and third-harmonic generation in plasmas with density ripple. Phys. Plasmas 14, 123104.CrossRefGoogle Scholar
Durfee, C.G., Lynch, J. & Milchberg, H.M. (1995). Development of a plasma waveguide for high-intensity laser pulses. Phys. Rev. E 51, 23682389.CrossRefGoogle ScholarPubMed
Durfee, C.G. & Milchberg, H.M. (1993). Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 24092412.CrossRefGoogle ScholarPubMed
Ehrlich, Y., Cohen, C., Zigler, A., Krall, J., Sprangle, P. & Esarey, E. (1996). Guiding of high intensity laser pulses in straight and curved plasma channel experiments. Phys. Rev. Lett. 77, 41864189.CrossRefGoogle ScholarPubMed
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quan. Electron. 33, 18791914.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. 431, 538541.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C.B., Cary, J. & Lee- mans, W.P. (2005). Guiding of relativistic laser pulses by preformed plasma channels. Phys. Rev. Lett. 95, 145002.CrossRefGoogle ScholarPubMed
Korobkin, D.V., Nam, C.H., Suckewer, S. & Goltsov, A. (1996). Demonstration of soft X-ray lasing to ground state in Li3. Phys. Rev. Lett. 77, 52065209.CrossRefGoogle Scholar
Kumar, A., Dahiya, D. & Sharma, A.K. (2011). Laser prepulse induced plasma channel formation in air and relativistic self focusing of an intense short pulse. Phys. Plasmas 18, 023102.CrossRefGoogle Scholar
Kuo, C.-C., Pai, C.-H., Lin, M.-W., Lee, K.-H., Lin, J.-Y., Wang, J. & Chen, S.-Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901.CrossRefGoogle ScholarPubMed
Leemans, W.P., Nieter, B., Gonsalves, A.J., Tth, C., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (1996). Stimulated Raman scattering in a plasma channel. Phys. Plasmas 3, 3410.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2008). Third harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam. Phys. Plasmas 15, 023106.Google Scholar
Milchberg, H.M., Durfee III, C.G. & McIlrath, T.J. (1995). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.CrossRefGoogle ScholarPubMed
Nikitin, S.P., Antonsen, T.M., Clark, T.R., Yuelin, L. & Milchberg, H.M. (1997). Guing of intense femtosecond pulses in preformed plasma channels. Opt. Lett. 22, 17871789.CrossRefGoogle ScholarPubMed
Panwar, A., Kumar, A. & Ryu, C.M. (2012). Stimulated Raman forward scattering of laser in a pre-formed plasma channel. Laser Part. Beams 18, 023102.Google Scholar
Rax, J.M. & Fisch, N.J. (1992). Third-harmonic generation with ultrahigh-intensity laser pulses. Phys. Rev. Lett. 69, 772775.CrossRefGoogle ScholarPubMed
Rax, J.M. & Fisch, N.J. (1993). Phase-matched third harmonic generation in a plasma. IEEE Trans. Plasma Sci. 21, 105.CrossRefGoogle Scholar
Shibu, S. & Tripathi, V.K. (1998). Phase matched resonant third harmonic generation of laser radiation in a plasma channel: non local effects. Phys. Lett. A 99, 99102.CrossRefGoogle Scholar
Shvets, G. & Li, X. (2001). Raman forward scattering in plasma channels. Phys. Plasmas 8, 8.CrossRefGoogle Scholar
Sodha, M.S., Faisal, M. & Verma, M.P. (2009). Effect of self-focusing on third harmonic generation by a Gaussian beam in a collisional plasma. Phys. Plasmas 16, 082340.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self Focusing of Laser Beams in Dielectrics, Plasmas and Semiconductors. Delhi: Tata McGraw-Hill.Google Scholar
Spence, D.J., Butler, A. & Hooker, S.M. (2001). First demonstration of guiding of high-intensity laser pulses in a hydrogen-filled capillary discharge waveguide. J. Phys. B: At. Mol. Opt 34, 4103.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009). Effect of self focusing on the prolongation of laser produced plasma channel. Laser Part. Beams 27, 3339.CrossRefGoogle Scholar
Zhang, S., Xie, B.-S., Hong, X.-R., Wu, H.-C. & Zhao, X.-Y. (2011). Solitary waves of laser pulse in a plasma channel. Phys. Plasmas 18, 033104.CrossRefGoogle Scholar