Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T15:16:13.652Z Has data issue: false hasContentIssue false

The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule

Published online by Cambridge University Press:  25 May 2012

E. Irani
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
S. Zare
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
H.A. Navid
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
Z. Dehghani
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
R. Sadighi-Bonabi*
Affiliation:
Departments of Physics, Sharif University of Technology, Tehran, Iran
*
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, 11365-9161 Tehran, Iran. E-mail: [email protected]

Abstract

The optimum convolution of dual short pulse for producing the maximum wakefield and the highest dissociation probability of CH4 has been investigated. By using three fundamental shapes of pulses though four different arrangements, the generated wake are considered in plasma. It is found that when the first and second pulses were rectangular–triangular and sinusoidal pulse shapes, respectively, the resultant wakefield amplitude is the highest. This effect opens up a new novel way by pulse shaping mechanism in the photo dissociation dynamics of molecules and controlling of chemical reactions in the desired channels by short pulse intense lasers for reducing the computation time of genetic algorithm model. Using field assisted dissociation model, the dissociation probability for a CH4+ molecule exposed to a 100 femtosecond 8 Jcm−2 Ti:Sapphire laser pulse is calculated. Here, the highest possible dissociation probability of the methane ion is calculated by the gradient optimization method in which the gradient of a function should be in the direction of the local extremes. The C-H molecular bond of CH4+ ion is assumed to be in the same direction as the electric field component of the laser pulse. These results show that there is an excellent match with experimental data. The remarkable feature of this work is that the sensitivity of the dissociation probability of the initial bond length q, is studied and the desired product channel is controlled by variation of the laser intensity and it's time evolution by introducing a characteristic vectored space for intensity and duration of two tailored rectangular femtosecond laser pulses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aria, A.K., Malik, H.K. & Singh, K.P. (2009). Excitation of wakefield in a rectangular waveguide: Comparative study with different microwave pulses. Laser Part. Beams 27, 4147.CrossRefGoogle Scholar
Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, F., Strehle, M. & Gerber, G. (1998 a). Evolutionary algorithms and their application to optimal control studies. Sci. 282, 91.Google Scholar
Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, V., Strehle, M., Gerber, G. (1998 b). Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Sci. 282, 919.Google ScholarPubMed
Balakirev, V.A., Karas, V.I., Karas, I.V. & Levchenko, V.D. (2001). Plasma wakefield excitation by relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser Part. Beams 19, 597604.Google Scholar
Bauer, D. (2002). Molecules and clusters in intense laser field. Laser Part. Beams 20, 541542.Google Scholar
Bauer, D. (2003). Plasma formation through field ionization in intense laser–matter interaction. Laser Part. Beams 21, 489495.Google Scholar
Bauer, D. & Ceccherini, F. (2001). A numerial ab initio study of harmonic generation from a ring shaped model molecule in laser fields. Laser Part. Beams 19, 8590.CrossRefGoogle Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Yu.Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.Google Scholar
Bostandoust Nik, E. & Sadighi-Bonabi, R. (2010). Theoretical study of CO adsorption on the illumnated TiO2(001) surface. Appl. Surf. Sic. 256, 37953798.Google Scholar
Brumer, P. & Shapiro, M. (2009). Quantum coherance in the control of molecular processes. Laser Part. Beams 16, 599603.Google Scholar
Castro, A. & Gross, E.K.U. (2009). Acceleration of quantum optimal control theory algorithms with mixing strategies. Phys. Rev. E 79, 056704.CrossRefGoogle ScholarPubMed
Chyla, W.T. (2006). On generation of collimated highpower gamma beams. Laser Part. Beams 24, 143156.CrossRefGoogle Scholar
Cook, P.A., Ashfold, M.N.R., Jee, Y.J., Jung, K.H., Harich, S. & Yang, X. (2001). Vaccum ultra-violet photochemistry of methane. Silane and germane. Phys. Chem. Chem. Phys. 3, 18481860.Google Scholar
Cornaggio, C., Schmidt, M. & Normand, D. (1994). Coulomb explosion of CO2 in an intense femto-second laser field. J. Phys. B 27, 123.Google Scholar
Cowan, T.E., Perry, M.D., Key, M.H., Ditmire, T.R., Hatchett, S.P., Henry, E.A., Moody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M. A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kühl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Dyson, A. & Dangor, A.E. (1991). Laser beat wave acceleration of particles. Laser Part. Beams 9, 619631.Google Scholar
Frisch, M.J., Trucks, G.W., et al. (2003). Gaussian03, Revisiona.1, Gaussian, Pittsburgh, Pa. Goswami, D. Phys. Rep. 374385.Google Scholar
Gaurav, R., Ajay, K.U., Rohit, K.M. & Pallavi, J. (2008). Electron acceleration by two copropagating laser pulses in plasma. Phys. Rev. Accel. Beams 11, 071301.Google Scholar
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Labate, L. & Tomassini, P. (2005). The laser-matter interaction meets the high energy physics Laser-plasma accelerators and bright X/γ-ray sources. Laser Part. Beams 23, 309314.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1525.CrossRefGoogle Scholar
Graham, P., Fang, X., Ledingham, K.W.D., Sinohal, R.P., Mccanny, T., Smith, D.J., Kosmidis, C., Tzallas, P. & Langeley, A.J. (2000). Unusual fragmentation pattern from the dissociation of small molecule. Laser Part. Beams 18, 417432.CrossRefGoogle Scholar
Graham, P., Menkir, G. & Levis, R.J. (2003). An investigation of the effects of experimental paremeters on the closed loop control of photoionization, dissociation processes in acetophenone. Spec. Chim. Acta B 58, 1097.Google Scholar
Hoffmann, D.H.H., Blasevic, A., Rosmej, P.N.I., Roth, M., Tahir, N.A., Tauschwitz, A., Udera, S., Vanentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3746.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.Google Scholar
Hornung, T., Meier, R., Zeidler, D., Kompa, K.L., Proch, D. & Motzkus, M. (2000). Optimal control of one-and two photon transitions with shaped femtosecond pulses and feedback. Appl. Phys. B 71, 277284.CrossRefGoogle Scholar
Jiang, Z., Learird, D.E. & Weiner, A.M. (2005). Line by line pulse shaping control for optical arbitrary waveform generation. Opt. Exp. 13, 25.Google Scholar
Judson, R.S. & Rabitz, H. (1992). Teaching lasers to control molecules. Phys. Rev. Lett. 68, 15001503.CrossRefGoogle ScholarPubMed
Leemans, W.P., Catravas, P., Esarey, E., Geddes, C.G.R., Toth, C., Trines, R., Schroeder, C.B. & Shadwick, B.A. (2002). Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Malik, H.K., Kumar, S. & Singh, K.P. (2008). Electron acceleration in a rectangular waveguide filled with unmagnetized inhomogeneous cold plasma. Laser Part. Beams 26, 197205.Google Scholar
Malik, H.K., Kumar, S. & Nishida, Y. (2007). Electron acceleration by laser produced wakefield: Pulse shape effect. Opt. Commun. 280, 417423.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.Google Scholar
Maslova, Yu.Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.Google Scholar
Nikzad, L., Sadighi-Bonabi, R., Riazi, Z., Mohammadi, M. & Heydarian, F. (2012). Simulation of enhanced characteristic X-rays from a 40-MeV electron beam laser accelerated in plasma. Phys. Rev. Accel. Beams 15, 021301.Google Scholar
Oron, D., Dudovich, N. & Silberberg, Y. (2003). Femtosecond phase-and-polarization control for background free coherent anti stocks Raman spectroscopy. Phys. Rev. Lett. 90, 21.CrossRefGoogle Scholar
Oron, D. & Silberg, Y. (2005). Spatio temporal coherent control using shaped temporally focused pulses. Opt. Exp. 13, 24.CrossRefGoogle Scholar
Perlado, J.M., Sanz, J.,Velarde, M., Reyes, S., Caturla, M.J., Arévalo, C., Cabellos, O., Dominguez, E., Marian, J., Martinez, E., Mota, F., Rodriguez, A., Salvador, M. & Velarde, G. (2005). Activation and damage of fusion materials and tritium effects in inertial fusion reactors: Strategy for adequate irradiation. Laser Part. Beams 23, 345349.Google Scholar
Rabitz, et al. (1988). Phys. Rev. A 37, 4950.Google Scholar
Rosenzweig, J.B., Cline, D.B., Cole, B., Figueroa, H., Gai, W., Konecny, R., Norem, J., Schoessow, P. & Simpson, J. (1988). Experimental observation of plasma wakefield acceleration. Phys. Rev. Lett. 61, 98101.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Sadighi-Bonabi, R. & Etehadi-Abari, M. (2010 d). The electron density distribution and field profile in underdense magnetized plasma. Phys. Plasmas 17, 032101.CrossRefGoogle Scholar
Sadighi-Bonabi, R. & Kokabi, O. (2006). Evaluation of transmutation of 137Cs (γ, n) 136Cs using ultra intense lasers. Ch. Phys. Lett. 6, 14341436.Google Scholar
Sadighi-Bonabi, R. & Moshkelgosha, M. (2011). Self-focusing up to the incident laser wavelength by an appropriate density ramp. Laser Part. Beams 29, 453458.Google Scholar
Sadighi-Bonabi, R. & Rahmatollahpur, Sh. (2010 e). Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model. Phys. Rev. A 81, 023408.Google Scholar
Sadighi-Bonabi, R. & Rahmatollahpur, Sh. (2010 f). A complete accounting of the monoenergetic electron parameters in an ellipsoidal bubble model. Phys Plasmas 17, 033105.Google Scholar
Sadighi-Bonabi, R., Habibi, M. & Yazdani, E. (2010 h). Improving the relativistic self-focusing of intense laser beam in plasma using density transition. Phys. Plasmas 16, 083105.Google Scholar
Sadighi-Bonabi, R., Habibi, M. & Yazdani, E. (2009 b). Improving the relativistic self-focusing of intense laser beam in plasma using density transition. Phys. Plasmas 16, 083105.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010 a). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser and Particle Beams 28, 101107.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Irani, E., Safaie, B., Imani, Kh., Silatani, M. & Zare, S. (2010 c). Possibility of ultra-intense laser transmutation of 93Zr (γ, n) 92Zr a long-lived nuclear waste into a stable isotope. Energy Conver. Manag. 51, 636639.Google Scholar
Sadighi-Bonabi, R., Navid, H. A. & Zobdeh, P. (2009 a). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams 27, 223231.Google Scholar
Sadighi-Bonabi, R., Rahmatallahpor, S., Navid, H.A., Lotfi, E., Zobdeh, P., Reiazi, Z., Nik, M.B. & Mohamadian, M. (2009 c). Modification of the energy of mono-energetic electron beam by ellipsoid model for the cavity in the bubble regime. Contrib. Plasma Phys. 49, 4954.Google Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010 g). Dielectric magnifying of plasma blocks by nonlinear force acceleration with delayed electron heating. Phys. Plasmas 17, 113108.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora., H. (2010 b). Dielectric magnifying of plasma blocks by nonlinear force acceleration with delayed electron heating. Phys. Plasmas 17, 113108.Google Scholar
Sadighi-Bonabi, R.,Yazdani, E., Habibi, M. & Lotfi, E. (2009 d). Comment on “Plasma Density Ramp for Relativistic Self-focusing of an Intense Laser. J. Opt. Soc. Am. B 27, 1731.Google Scholar
Sprangle, P., Esarey, E. & Ting, A. (1990). Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 20112014.Google Scholar
Sprangle, P., Hafizi, B., Peñano, J.R., Hubbard, R.F., Ting, A., Moore, C.I., Gordon, D.F. , Zigler, A., Kaganovich, D., Antonsen, T.M. Jr., (2001). Wakefield generation and GeV acceleration in tapered plasma channels. Phys. Rev. E 63, 056405.CrossRefGoogle ScholarPubMed
Sugimori, K., Ito, T., Takta, Y., Ichitani, K., Nagao, H. & Nishikawa, K. (2007). Theoretical study of above- threshold dissociation on diatomic molecules by using nonresonant intense laser pulses. J. Phys. Chem. A 111, 94179423.Google Scholar
Sundermann, K., Rabitz, H. & Vivie-Riedle, R. (2000). Compensating for spatial laser profile effects on the control of quantum systems. Phys. Rev. A 62, 013409.Google Scholar
Vicente, J.J., Ferconiand, A.M. & Pantelipes, S.T. (2000). Interactions of intense radiation with atoms, molecules and solids. Laser Part. Beams 18, 557562.Google Scholar
Wang, C., Song, D., Liu, Y. & Kong, F. (2006). Pulse width effect on the dissociation probability of CH4+ in the intense femtosecond laser field. Chinese Science Bulletin 51, 10.Google Scholar
Wang, S., Tang, X., Gao, L., Elshakre, M. & Kong, F. (2003). Dissociation of methane in intense laser fields. J. Phys. Chem. A 107, 32.Google Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F.H. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.Google Scholar
Zewail, A.H. (1994). Femto chemistry. World scientific.Google Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2008). New ellipsoid cavity model for high-intensity laser-plasma interaction. Plasma Dev. Oper. 16, 105114.Google Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2010). Electron trajectory evaluation in laser-plasma interaction for effective output beam. Chin. Phys. B 19, 064210.CrossRefGoogle Scholar