Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T16:42:17.690Z Has data issue: false hasContentIssue false

Effect of inside diameter of tip on proton beam produced by intense laser pulse on double-layer cone targets

Published online by Cambridge University Press:  22 February 2013

Fengjuan Wu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, Sichuan, China
Weimin Zhou
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Lianqiang Shan
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Zongqing Zhao
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Jinqing Yu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Bo Zhang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Yonghong Yan
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Zhimeng Zhang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Yuqiu Gu*
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
*
Address correspondence and reprint requests to: Yuqiu Gu, Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan Province, 621900, China. E-mail: [email protected]

Abstract

The laser-driven acceleration of proton beams from a double-layer cone target, comprised of a cone shaped high-Z material target with a low density proton layer, is investigated via two-dimensional fully relativistic electro-magnetic particle-in-cell simulations. The dependence of the inside diameter (ID) of the tip size of a double-layer cone target on proton beam characteristics is demonstrated. Our results show that the peak energy of proton beams significantly increases and the divergence angle decreases with decreasing ID size. This can be explained by the combined effects of a stronger laser field that is focused inside the cone target and a larger laser interaction area by reducing the ID size.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ban, H.Y., Gu, Y.J., Kong, Q., Li, Y.Y., Zhu, Z. & Kawata, S. (2012). Quasi-monoenergetic tens-of-MeV proton beams by a laser-illuminated funnel-like target. Chin. Phys. Lett. 29, 035202.CrossRefGoogle Scholar
Birdsall, C.K. & Langdon, A.B. (1991). Plasma Physics Via Computer Simulation. New York: McGraw-Hill.CrossRefGoogle Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.Google Scholar
Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001.CrossRefGoogle ScholarPubMed
Fritzler, S., Malka, V., Grillon, G., Rousseau, J.P., Burgy, F., Lefebvre, E., d'Humiéres, E., McKenna, P. & Ledingham, K.W.D. (2003). Proton beams generated with high-intensity lasers: Applications to medical isotope production. Appl. Phys. Lett. 83, 30393041.CrossRefGoogle Scholar
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, T., Geissel, M., Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets. Phys. Plasma 18, 056710.CrossRefGoogle Scholar
Kluge, T., Gaillard, S.A., Flippo, K.A., Burris-Mog, T., Enghardt, W., Gall, B., Geissel, M., Helm, A., Kraft, S.D., Lockard, T., Metzkes, J., Offermann, D.T., Schollmeier, M., Schramm, U., Zeil, K., Bussmann, M. & Cowan, T.E. (2012). High proton energies from cone targets: electron acceleration mechanisms. NEW J. Phys. 14, 023038.CrossRefGoogle Scholar
Krushelnick, K., Clark, E.L., Allott, R., Beg, F.N., Danson, C.N., Machacek, A., Malka, V., Najmudin, Z., Neely, D., Norreys, P.A., Salvati, M.R., Santala, M.I.K., Tatarakis, M., Watts, I., Zepf, M. & Dangor, A.E. (2000). Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 11101115.CrossRefGoogle Scholar
Ma, T., Sawada, H., Patel, P.K., Chen, C.D., Divol, L., Higginson, D.P., Kemp, A.J., Key, M.H., Larson, D.J., Le Pape, S., Link, A., MacPhee, A.G., McLean, H.S., Ping, Y., Stephens, R.B., Wilks, S.C. & Beg, F.N. (2012). Hot electron temperature and coupling efficiency scaling with prepulse for cone-guided fast ignition. Phys. Rev. Lett. 108, 115004.CrossRefGoogle ScholarPubMed
Morita, T., Esirkepov, T.Zh., Bulanov, S.V., Koga, J. & Yamagiwa, M. (2008). Tunable high-energy ion source via oblique laser pulse incident on a double-layer target. Phys. Rev. Lett. 100, 145001.CrossRefGoogle ScholarPubMed
Nakamura, T., Mima, K., Sakagami, H. & Johzaki, T. (2007 a). Electron surface acceleration on a solid capillary target inner wall irradiated with ultraintense laser pulses. Phys. Plasma 14, 053112.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H., Mima, K. & Koga, J. (2007 b). Optimization of cone target geometry for fast ignition. Phys. Plasma 14, 103105.CrossRefGoogle Scholar
Renard-Le Galloudec, N. & D'Humieres, E. (2010). New micro-cones targets can efficiently produce higher energy and lower divergence particle beams. Laser Part. Beams 28, 513519.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasma 11, 30833087.CrossRefGoogle Scholar
Sentoku, Y. & Downer, M.C. (2010). Heat transport in solid target following relativistic laser{matter interaction. Hi. Ener. Density Phys. 6, 268273.CrossRefGoogle Scholar
Umeda, T., Omura, Y., Tominaga, T. & Matsumoto, H. (2003). A new charge conservation method in electromagnetic particle-in-cell simulations. Comp. Phys. Commun. 156, 7385.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra{intense laser{solid interactions. Phys. Plasma 8, 542549.CrossRefGoogle Scholar
Yu, J.Q., Zhou, W.M., Jin, X.L., Cao, L.H., Zhao, Z.Q., Hong, W., Li, B. & Gu, Y.Q. (2012). Improvement of proton energy in high-intensity laser-nanobrush target interactions. Laser Part. Beams 30, 307311.CrossRefGoogle Scholar
Zhou, W.M., Gu, Y.Q., Hong, W., Cao, L.F., Zhao, Z.Q., Ding, Y.K., Zhang, B.H., Cai, H.B. & Mima, K. (2010). Enhancement of monoenergetic proton beams via cone substrate in high intensity laser pulse-double layer target interactions. Laser Part. Beams 28, 585590.CrossRefGoogle Scholar