Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T10:51:53.584Z Has data issue: false hasContentIssue false

Effect of high-Z dopant on the laser-driven ablative Richtmyer–Meshkov instability

Published online by Cambridge University Press:  15 May 2017

B. Xu*
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
Y. Ma
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
X. Yang
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
W. Tang
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
S. Wang
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
Z. Ge
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
Y. Zhao
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
Y. Ke
Affiliation:
College of Science, National University of Defense Technology, Changsha 410073, China
*
Address correspondence and reprint requests to: B. Xu, College of Science, National University of Defense Technology, Changsha 410073, China. E-mail: [email protected]

Abstract

The effects of high-Z dopant on the laser-driven ablative Richtmyer–Meshkov instability (RMI) are investigated by theoretical analysis and radiation hydrodynamics simulations. It is found that the oscillation amplitude of ablative RMI depends on the ablation velocity, the blow-off plasma velocity and the post-shock sound speed. Owing to enhancing the radiation at the plasma corona and increasing the radiation temperature at the ablation front, the high-Z dopant in plastic target can significantly increase the ablation velocity and the blow-off plasma velocity, leading to an increase in oscillation frequency and a reduction in oscillation amplitude of the ablative RMI. The high-Z dopant in plastic target is beneficial to reduce the seed of ablative Rayleigh–Taylor instability. These results are helpful for the design of direct drive inertial confinement fusion capsules.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aglitskiy, Y., Karasik, M., Velikovich, A.L., Serlin, V., Weaver, J.L., Kessler, T.J., Nikitin, S.P., Schmitt, A.J., Obenschain, S.P., Metzler, N. & Oh, J. (2012). Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh–Taylor instability in a laser target. Phys. Plasmas 19, 102707.CrossRefGoogle Scholar
Aglitskiy, Y., Velikovich, A.L., Karasik, M., Serlin, V., Pawley, C.J., Schmitt, A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H. & Metzler, N. (2001). Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability in plastic targets. Phys. Rev. Lett. 87, 26.Google Scholar
Aglitskiy, Y., Velikovich, A.L., Karasik, M., Serlin, V., Pawley, C.J., Schmitt, A.J., Obenschain, S.P., Mostovych, A.N., Gardner, J.H. & Metzler, N. (2002). Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability and feedout in planar plastic targets. Phys. Plasmas 9, 2264.Google Scholar
Antoine, L. (2003). Bulk turbulent transport and structure in Rayleigh–Taylor, Richtmyer–Meshkov, and variable acceleration instabilities. Laser Part. Beams 21, 305310.Google Scholar
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford University Press.CrossRefGoogle Scholar
Betti, R., Goncharov, V.N., McCrory, R.L. & Verdon, C.P. (1995). Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability. Phys. Plasmas 2, 3844.Google Scholar
Betti, R., Goncharov, V.N., McCrory, R.L. & Verdon, C.P. (1996). Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas 3, 2122.CrossRefGoogle Scholar
Betti, R., Goncharov, V.N., McCrory, R.L. & Verdon, C.P. (1998). Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas 5, 1446.CrossRefGoogle Scholar
Bodner, S.E., Colombant, D.G., Garder, J.H., Lehmberg, R.H. & Obenschain, S.T. (1998). Direct-drive laser fusion: status and prospects. Phys. Plasmas 5, 19011918.Google Scholar
Eidmann, K. (1994). Radiation transport and atomic physics of plasmas. Laser Part. Beams 12, 22.Google Scholar
Fujioka, S., Sunahara, A., Nishihara, K, Ohnishi, N., Johzaki, T., Shiraga, H., Shigemori, K., Nakai, M., Ikegawa, T., Murakami, M., Nagai, K., Norimatsu, T., Azechi, H. & Yamanaka, T. (2004 a). Suppression of the Rayleigh-Taylor instability due to self-radiation in a multi-ablation target. Phys. Rev. Lett. 92, 195001.CrossRefGoogle Scholar
Fujioka, S., Sunahara, A., Ohnishi, N., Tamari, Y., Nishihara, K., Azechi, H., Shiraga, H., Nakai, M., Shigemori, K., Sakaiya, T., Tanaka, M., Otani, K., Okuno, K., Watari, T., Yamada, T., Murakami, M., Nagai, K., Norimatsu, T., Izawa, Y., Nozaki, S. & Chen, Y. (2004 b). Suppression of Rayleigh–Taylor instability due to radiative ablation in brominated plastic targets. Phys. Plasmas 11, 2814.Google Scholar
Goncharov, V. (1999). Theory of the ablative Richtmyer–Meshkov instability. Phys. Rev. Lett. 82, 2091.Google Scholar
Goncharov, V.N., Betti, R., McCrory, R.L., Sorotokin, P. & Verdon, C.P. (1996 a). Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas 3, 1402.CrossRefGoogle Scholar
Goncharov, V.N., Betti, R., McCrory, R.L. & Verdon, C.P. (1996 b). Self-consistent stability analysis of ablation fronts with small Froude numbers. Phys. Plasmas 3, 4665.CrossRefGoogle Scholar
Goncharov, V.N., Gotchev, O.V., Vianello, E., Boehly, T.R., Knauer, J.P., McKenty, P.W., Radha, P.B., Regan, S.P., Sangster, T.C., Skupsky, S., Smalyuk, V.A., Betti, R., McCrory, R.L., Meyerhofer, D.D. & CherfilsClérouin, C. (2006). Early stage of implosion in inertial confinement fusion: shock timing and perturbation evolution. Phys. Plasmas 13, 012702.Google Scholar
Kawata, S., Sato, T., Teramoto, T., Bandoh, E., Masubichi, Y. & Takahashi, I. (1993). Radiation effect on pellet implosion and Rayleigh–Taylor instability in light-ion beam inertial confinement fusion. Laser Part. Beams 11, 757.Google Scholar
Kemp, A.J. & Meyer-ter-Vehn, J. (1998). An equation of state code for hot dense matter, based on the QEOS description. Nuclear Instruments and Methods in Physics Research A415, 674676.Google Scholar
Keskinen, M.J., Velikovich, A.L. & Schmitt, A. (2006). Multimode evolution of the ablative Richtmyer–Meshkov and Landau–Darrieus instability in laser imprint of planar targets. Phys. Plasmas 13, 122703.Google Scholar
Meshkov, E.E. (1969). Instability of the interface between two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.Google Scholar
Ogoyski, A.I., Kawata, S. & Popova, P.H. (2010). Code OK3–an upgraded version of OK2 with beam wobbling function. Comput. Phys. Commun. 181, 1332.Google Scholar
Peterson, J.L., Clark, D.S., Masse, L.P. & Suter, L.J. (2014). The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions. Phys. Plasmas 21, 092710.Google Scholar
Piriz, A.R., Sanz, J. & Ibanez, L.F. (1997). Rayleigh–Taylor instability of steady ablation fronts: the discontinuity model revisited. Phys. Plasmas 4, 1117.CrossRefGoogle Scholar
Rayleigh, L. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. R. Math. Soc. 14, 170177.Google Scholar
Richtmyer, R.D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297319.Google Scholar
Robey, H.F., Smalyuk, V.A., Milovich, J.L., Döppner, T., Casey, D.T., Baker, K.L., Peterson, J.L., Bachmann, B., BerzakHopkins, L.F., Bond, E., Caggiano, J.A., Callahan, D.A., Celliers, P.M., Cerjan, C., Clark, D.S., Dixit, S.N., Edwards, M.J., Gharibyan, N., Haan, S.W., Hammel, B.A., Hamza, A.V., Hatarik, R., Hurricane, O.A., Jancaitis, K.S., Jones, O.S., Kerbel, G.D., Kroll, J.J., Lafortune, K.N., Landen, O.L., Ma, T., Marinak, M.M., MacGowan, B.J., MacPhee, A.G., Pak, A., Patel, M., Patel, P.K., Perkins, L.J., Sayre, D.B., Sepke, S.M., Spears, B.K., Tommasini, R., Weber, C.R., Widmayer, C.C., Yeamans, C., Giraldez, E., Hoover, D., Nikroo, A., Hohenberger, M. & Johnson, M.G. (2016). Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping. Phys. Plasmas 23, 056303.Google Scholar
Sanz, J. (1996). Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. E 53, 4026.Google Scholar
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977.Google Scholar
Taylor, G. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. Roy. Soc. London A 201, 192.Google Scholar
Velikovich, A., Dahlburg, J. & Taylor, R. (1998). Saturation of perturbation growth in ablatively driven planar laser targets. Phys. Plasmas 5, 1491.CrossRefGoogle Scholar
Youngs, D.L. (1994). Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas 12, 725750.Google Scholar