Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T19:25:56.061Z Has data issue: false hasContentIssue false

Dynamic screening and charge state of fast ions in plasma and solids

Published online by Cambridge University Press:  22 April 2009

E. Nardi*
Affiliation:
Weizmann Institute of Science, Faculty of Physics, Rehovot, Israel
Y. Maron
Affiliation:
Weizmann Institute of Science, Faculty of Physics, Rehovot, Israel
D.H.H. Hoffmann
Affiliation:
Technische Universität Darmstadt, Institut für Kernphysik, Darmstadt, Germany
*
Address correspondence and reprint requests to: E. Nardi, Weizmann Institute of Science, Faculty of Physics, Rehovot, Israel. E-mail: [email protected]

Abstract

This paper addresses the effect of target plasma electrons on the charge state of energetic ions, penetrating a target composed of bound as well as plasma electrons. Dynamic screening of the projectile Coulomb potential by the plasma electrons brings about a depression in the ionization energy of the ionic projectiles, as has been verified experimentally. This in turn makes the ionization cross-sections larger, while making the recombination cross-section smaller, thereby causing an increase in the ion charge state compared to the case of a gas target. The effect of the plasma environment, where the valence electrons are treated as plasma, is illustrated here for a 2 MeV carbon beam penetrating amorphous carbon targets of varying densities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, J.U., Gruner, F., Ryabov, V.A. & Uguzzoni, A. (2002). On transverse cooling of channeled ions by electron capture and loss. Nucl. Instr. & Meth. Phys. Res. B 193, 118127.CrossRefGoogle Scholar
Barriga-Carrasco, M.D. (2008). Mermin dielectric function versus local field corrections on proton stopping in degenerate plasmas. Laser Part. Beams 26, 389395.CrossRefGoogle Scholar
Betz, H.D. & Grodzins, L. (1970). Charge states and excitation of fast heavy ions passing through solids: A new model for density effect. Phys. Rev. Lett. 25, 211.CrossRefGoogle Scholar
Betz, H.D. (1983). Applied Atomic Collision Physics. New York: Academic Press.Google Scholar
Bohr, N. & Lindhard, J. (1954). Electron capture and loss by heavy ions penetrating through matter. Mat. Fys. Medd. Dan. Vid. Selsk. 28, 131.Google Scholar
Brandt, W. (1975). Atomic Collisions in Solids. New York: Plenum.Google Scholar
Chevallier, M., Clouvas, A., Faria, N.V.D., Mazuy, B.F., Gaillard, M.J., Poizat, J.C., Remillieux, J. & Desesquelles, J. (1990). Evidence for a velocity threshold for the binding of the 3p state of fast He+ ions inside solids. Phys. Rev. A 41, 17381740.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., Rivet, M.F., Servajean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction: A standard model approach. Nucl. Instr. & Meth. Phys. Res. A 278, 3843.CrossRefGoogle Scholar
Dietrich, K.G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy-ions in a hydrogen plasma. Phys. Rev. Lett. 69, 3623–366.CrossRefGoogle Scholar
Ebeling, W., Kraeft, W.D. & Kremp, D. (1976). Theory of bound states and ionization equilibrium in plasmas and solids. In Ergebnisse der Plasmaphysik und der Gaselektronik, Band 5. Berlin: Akademie-Verlag.Google Scholar
Eisenbarth, S., Rosmej, O.N., Shevelko, V.P., Blazevic, A. & Hoffmann, D.H.H. (2007). Numerical simulations of the projectile ion charge difference in solid and gaseous stopping matter. Laser Part. Beams 25, 601611.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Evans, R.G. (2008). Ion heating due to ionization and recombination. Laser Part. Beams 26, 3740.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Gardes, D., Bimbot, R., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., Rivet, M.F., Servajean, A., Fleurier, C., Sanba, A., Deutsch, C., Maynard, G., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1988). Investigation of the transmission and stopping of light-ions passing through a plasma target. J. Phys. 49, 151157.Google Scholar
Gryzinski, M. (1965). Classical theory of atomic collisions. I. Theory of inelastic collisions. Phys. Rev. 138, A336A358.CrossRefGoogle Scholar
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagistris, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy-ions in plasmas. Nucl. Instr. & Meth. Phys. Res. B 90, 19.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Jakubassa, D.H. (1977). Dynamic screening of ions passing through solids. J. Phys. C 10, 44914497.Google Scholar
Kojima, M., Mitomo, M., Sasaki, T., Hasegawa, J. & Ogawa, M. (2002). Charge-state distribution and energy loss of 3.2-MeV oxygen ions in laser plasma produced from solid hydrogen. Proc. 14th International Heavy Ion Inertial Fusion Symposium. Moscow, Russia.Google Scholar
Kraeft, W.D., Kremp, D., Ebeling, W. & Ropke, G. (1986). Quantum Statistics of Charged Particle Systems. New York: Plenum Press.CrossRefGoogle Scholar
Kremp, D., Schlanges, M. & Kraeft, W.D. (2005). Quantum Statistics of Nonideal Plasmas. Berlin: Springer.Google Scholar
Lifschitz, A.F. & Arista, N.R. (2004). Effective charge and the mean charge of swift ions in solids. Phys. Rev. A 69, 012902/15.Google Scholar
Lifschitz, A.F. & Arista, N.R. (1998). Velocity-dependent screening in metals. Phys. Rev. A 57, 200207.CrossRefGoogle Scholar
Lindhard, J. (1954). On the properties of a gas of charged particles. Mat. Fys. Medd. Dan. Vid. Selsk. 8, 157.Google Scholar
Maynard, G., Chabot, M. & Gardes, D. (2000). Density effect and charge dependent stopping theories for heavy ions in the intermediate velocity regime. Nucl. Instr. & Meth. Phys. Res. B 164, 139146.CrossRefGoogle Scholar
Meister, C.-V. (1982). On the theory of conductivity and thermodynamics of nonideal plasmas. PhD. Thesis. Rostock: University Rostock.Google Scholar
Muller, J. & Burgdorfer, J. (1991). Dynamic thresholds for the existence of excited electronic states of fast ions in solids. Phys. Rev. A 43, 60276031.CrossRefGoogle ScholarPubMed
Nagy, J. & Bergara, A. (1996). A model for the velocity-dependent screening. Nucl. Instr. & Meth. B 115, 5861.CrossRefGoogle Scholar
Nardi, E. & Tombrello, T.A. (2006). Charge state of C-10 and C-5 energetic cluster ions in amorphous carbon targets: Simulations. J. Phys.-Conden. Mat. 18, 1135711370.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. (1982). Charge state and slowing of fast ions in a plasma. Phys. Rev. Lett. 49, 12511254.CrossRefGoogle Scholar
Nardi, E., Fisher, D.V., Roth, M., Blazevic, A. & Hoffmann, D.H.H. (2006). Charge state of Zn projectile ions in partially ionized plasma: Simulations. Laser Part. Beams 24, 131141.CrossRefGoogle Scholar
Nardi, E., Maron, Y. & Hoffmann, D.H.H. (2007). Plasma diagnostics by means of the scattering of electrons and proton beams. Laser Part. Beams 25, 489495.CrossRefGoogle Scholar
Ogawa, M., Neuner, U., Kobayashi, H., Nakajima, Y., Nishigori, K., Takayama, K., Iwase, O., Yoshida, M., Kojima, M., Hasegawa, J., Oguri, Y., Horioka, K., Nakajima, M., Miyamoto, S., Dubenkov, V. & Murakami, T. (2000). Measurement of stopping power of 240 MeV argon ions in partially ionized helium discharge plasma. Laser Part. Beams 18, 647653.Google Scholar
Paul, H. (2004). A note on the density effect in the stopping power of positive ions. Nucl. Instr. & Meth. B 217, 711.Google Scholar
Perumal, A, Horvat, V, Watson, RL, Peng, Y & Fruchey, KS (2005). Cross sections for charge change in argon and equilibrium charge states of 3.5 MeV/amu uranium ions passing through argon and carbon targets. Nucl. Instr. & Meth. B 227, 251260.CrossRefGoogle Scholar
Richard, P. (1985). Ion-atom collisions. In Atomic Inner Shell Processes I. New York: Academic.Google Scholar
Rogers, F.J., Graboske, H.C. & Harwood, D.J. (1970). Bound eigenstates of static screened coulomb potential. Phys. Rev. A 1, 15771583.CrossRefGoogle Scholar
Romagnani, L., Borghesi, M., Cecchetti, C.A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T.V., Macchi, A., Mora, P., Neely, D., Notley, M., Osterholtz, J., Pipahl, C.A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P.A. & Will, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241248.CrossRefGoogle Scholar
Rosmej, O.N., Pikuz, S.A., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, T., Efremov, V.P., Pikuz, T.A., Faenov, A.Y., Loboda, P., Golubev, A.A. & Hoffmann, D.H.H. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part Beams 23, 7985.CrossRefGoogle Scholar
Roth, M., Stockl, C., Suss, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. Europhys. Lett. 50, 2834.CrossRefGoogle Scholar
Schiwietz, G. & Grande, P.L. (2001). Improved charge state formulas. Nucl. Instr. & Meth. B 175–177, 125131.CrossRefGoogle Scholar
Shima, K., Kuno, N., Yamanouchi, M. & Tawara, H. (1992). Equilibrium charge fractions of ions of Z = 4–92 emerging from a carbon foil. Atomic Data and Nuclear Data Tables 51, 173241.CrossRefGoogle Scholar
Sigmund, P. & Narmann, A. (1995). Charge-exchange and energy-loss statistics of swift penetrating ions. Laser Part. Beams 13, 281292.CrossRefGoogle Scholar
Stewart, J.C. & Pyatt, K.D. (1966). Lowering of ionization potentials in plasmas. Astrophys. J. 144, 1203.CrossRefGoogle Scholar
Stockl, C., Boine Frankenheim, O., Roth, M., Suss, W., Wetzler, H., Seelig, W., Kulish, M., Dornik, M., Laux, W., Spiller, P., Stetter, M., Stowe, S., Jacoby, J. & Hoffmann, D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.CrossRefGoogle Scholar
Stoller, C., Suter, M., Himmel, R., Bonani, G., Nessi, M. & Wolfli, W. (1983). Charge state distributions of 1 to 7 MeV C and Be ions stripped in thin foils. IEE-NS Trans. Nucl. Sci. 30, 10741075.CrossRefGoogle Scholar