Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T02:27:06.465Z Has data issue: false hasContentIssue false

Directional transport of fast electrons at the front target surface irradiated by intense femtosecond laser pulses with preformed plasma

Published online by Cambridge University Press:  05 January 2012

X.X. Lin
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Y.T. Li*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
B.C. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Graduate University of the Chinese Academy of Sciences, Beijing, China
F. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
F. Du
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
S.J. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
L.M. Chen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
L. Zhang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
X. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
X.L. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Z.H. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
J.L. Ma
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
X. Lu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Q.L. Dong
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
W.M. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Z.M. Sheng
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Z.Y. Wei
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
J. Zhang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China Shanghai Jiao Tong University, Shanghai, China
*
Address correspondence and reprint requests: Y.T. Li, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. E-mail: [email protected]

Abstract

The effects of laser incidence angle on lateral fast electron transport at front target surface, when a plasma is preformed, irradiated by intense (>1018 W/cm2) laser pulses, are studied by Kα imaging technique and electron spectrometer. A horizontally asymmetric Kα halo, resulting from directional lateral electron transport and energy deposition, is observed for a large incidence angle (70°). Moreover, a group of MeV high energy electrons is emitted along target surface. It is believed that the deformed preplasma and the asymmetrical distribution of self-generated magnetic field, at large incidence angle, play an important role in the directional lateral electron transport.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akli, K.U., Key, M.H., Chung, H.K., Hansen, S.B., Freeman, R.R., Chen, M.H., Gregori, G., Hatchett, S., Hey, D., Izumi, N., King, J., Kuba, J., Norreys, P., Mackinnon, A.J., Murphy, C.D., Snavely, R., Stephens, R.B., Stoeckel, C., Theobald, W. & Zhang, B. (2007). Temperature sensitivity of Cu Kα imaging efficiency using a spherical Bragg reflecting crystal. Phys. Plasmas 14, 023102.CrossRefGoogle Scholar
Baton, S.D., Koenig, M., Fuchs, J., Benuzzi-Mounaix, A., Guillou, P., Loupias, B., Vinci, T., Gremillet, L., Rousseaux, C., Drouin, M., Lefebvre, E., Dorchies, F., Fourment, C., Santos, J.J., Batani, D., Morace, A., Redaelli, R., Nakatsutsumi, M., Kodama, R., Nishida, A., Ozaki, N., Norimatsu, T., Aglitskiy, Y., Atzeni, S. & Schiavi, A. (2008). Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets. Phys. Plasmas 15, 042706.CrossRefGoogle Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser–solid interactions up to 1019 W cm−2. Phys. Plasmas 4, 447457.CrossRefGoogle Scholar
Chen, M., Sheng, Z.M. & Zhang, J. (2006 a). On the angular distribution of fast electrons generated in intense laser interaction with solid targets. Phys. Plasmas 13, 014504.CrossRefGoogle Scholar
Chen, M., Sheng, Z.M., Zheng, J., Ma, Y.Y., Bari, M.A., Li, Y.T. & Zhang, J. (2006 b). Surface electron acceleration in relativistic laser-solid interactions. Opt. Exp. 14, 30933098.CrossRefGoogle ScholarPubMed
Gibbon, P. & Forster, E. (1996). Short-pulse laser – plasma interactions. Plasma Phys. Contr. Fusion 38, 769793.CrossRefGoogle Scholar
Habara, H., Adumi, K., Yabuuchi, T., Nakamura, T., Chen, Z.L., Kashihara, M., Kodama, R., Kondo, K., Kumar, G.R., Lei, L.A., Matsuoka, T., Mima, K. & Tanaka, K.A. (2006). Surface Acceleration of Fast Electrons with Relativistic Self-Focusing in Preformed Plasma. Phys. Rev. Lett. 97, 095004.CrossRefGoogle ScholarPubMed
Koch, J.A., Aglitskiy, Y., Brown, C., Cowan, T., Freeman, R., Hatchett, S., Holland, G., Key, M., Mackinnon, A., Seely, J., Snavely, R. & Stephens, R. (2003). 4.5- and 8-keV emission and absorption x-ray imaging using spherically bent quartz 203 and 211 crystals. Rev. Sci. Instr. 74, 21302135.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, Y. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle ScholarPubMed
Li, C.K., Frenje, J.A., Petrasso, R.D., Seguin, F.H., Amendt, P.A., Landen, O.L., Town, R.P.J., Betti, R., Knauer, J.P., Meyerhofer, D.D. & Soures, J.M. (2009). Pressure-driven, resistive magnetohydrodynamic interchange instabilities in laser-produced high-energy-density plasmas. Phys. Rev. E 80, 016407.CrossRefGoogle ScholarPubMed
Li, C.K., Seguin, F.H., Frenje, J.A., Rygg, J.R., Petrasso, R.D., Town, R.P.J., Amendt, P.A., Hatchett, S.P., Landen, O.L., Mackinnon, A.J., Patel, P.K., Smalyuk, V.A., Sangster, T.C. & Knauer, J.P. (2006 a). Measuring E and B Fields in Laser-Produced Plasmas with Monoenergetic Proton Radiography. Phys. Rev. Lett. 97, 135003.CrossRefGoogle Scholar
Li, Y.T., Yuan, X.H., Xu, M.H., Zheng, Z.Y., Sheng, Z.M., Chen, M., Ma, Y.Y., Liang, W.X., Yu, Q.Z., Zhang, Y., Liu, F., Wang, Z.H., Wei, Z.Y., Zhao, W., Jin, Z. & Zhang, J. (2006 b). Observation of a Fast Electron Beam Emitted along the Surface of a Target Irradiated by Intense Femtosecond Laser Pulses. Phys. Rev. Lett. 96, 165003.CrossRefGoogle ScholarPubMed
Li, Y.T., Zhang, J., Chen, L.M., Mu, Y.F., Liang, T.J., Wei, Z.Y., Dong, Q.L., Chen, Z.L., Teng, H., Chun-Yu, S.T., Jiang, W.M., Zheng, Z.J. & Tang, X.W. (2001). Hot electrons in the interaction of femtosecond laser pulses with foil targets at a moderate laser intensity. Phys. Rev. E 64, 046407.CrossRefGoogle Scholar
Lin, X.X., Li, Y.T., Liu, B.C., Liu, F., Du, F., Wang, S.J., Lu, X., Chen, L.M., Zhang, L., Liu, X., Wang, J., Liu, F., Liu, X.L., Wang, Z.H., Ma, J.L., Wei, Z.Y. & Zhang, J. (2010). Effect of prepulse on fast electron lateral transport at the target surface irradiated by intense femtosecond laser pulses. Phys. Rev. E 82, 046401.CrossRefGoogle ScholarPubMed
Ma, Y.Y., Sheng, Z.M., Li, Y.T., Zhang, J., Yuan, X.H., Xu, M.H., Zheng, Z.Y., Chang, W.W., Chen, M. & Zheng, J. (2006). Preplasma effects on the emission directions of energetic electrons in relativistic laser–solid interactions Journal. J. Plasma Phys. 72, 12691272.CrossRefGoogle Scholar
Mora, P. & Pellat, R. (1979). Self-similar expansion of a plasma into a vacuum. Phys. Fluids 22, 23002304.CrossRefGoogle Scholar
Nakamura, T., Kato, S., Nagatomo, H. & Mima, K. (2004). Surface-Magnetic-Field and Fast-Electron Current-Layer Formation by Ultraintense Laser Irradiation. Phys. Rev. Lett. 93, 265002.CrossRefGoogle ScholarPubMed
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 30833087.CrossRefGoogle Scholar
Sentoku, Y., Ruhl, H., Mima, K., Kodama, R., Tanaka, K.A. & Kishimoto, Y. (1999). Plasma jet formation and magnetic-field generation in the intense laser plasma under oblique incidence. Phys. Plasmas 6, 28552861.CrossRefGoogle Scholar
Sheng, Z.M., Sentoku, Y., Mima, K., Zhang, J., Yu, W. & Meyer-Ter-Vehn, J. (2000). Angular Distributions of Fast Electrons, Ions, and Bremsstrahlung x/γ-Rays in Intense Laser Interaction with Solid Targets. Phys. Rev. Lett. 85, 53405343.CrossRefGoogle ScholarPubMed
Stamper, J.A., Mclean, E.A. & Ripin, B.H. (1978). Studies of Spontaneous Magnetic Fields in Laser-Produced Plasmas by Faraday Rotation. Phys. Rev. Lett. 40, 11771181.CrossRefGoogle Scholar
Stamper, J.A., Papadopo., KSudan, R.N., Dean, S.O., Mclean, E.A. & Dawson, J.M. (1971). Spontaneous Magnetic Fields in Laser-Produced Plasmas. Phys. Rev. Lett. 26 1012.CrossRefGoogle Scholar
Van Woerkom, L., Akli, K.U., Bartal, T., Beg, F.N., Chawla, S., Chen, C.D., Chowdhury, E., Freeman, R.R., Hey, D., Key, M.H., King, J.A., Link, A., Ma, T., Mackinnon, A.J., Macphee, A.G., Offermann, D., Ovchinnikov, V., Patel, P.K., Schumacher, D.W., Stephens, R.B. & Tsui, Y.Y. (2008). Fast electron generation in cones with ultraintense laser pulses. Phys. Plasmas 15, 056304.CrossRefGoogle Scholar
Wallace, J.M. (1985). Nonlocal Energy Deposition in High-Intensity Laser-Plasma Interactions. Phys. Rev. Lett. 55, 707710.CrossRefGoogle ScholarPubMed
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Yabuuchi, T., Paradkar, B.S., Wei, M.S., King, J.A., Beg, F.N., Stephens, R.B., Nakanii, N., Hatakeyama, M., Habara, H., Mima, K., Tanaka, K.A. & Larsen, J.T. (2010). Transport study of intense-laser-produced fast electrons in solid targets with a preplasma created by a long pulse laser. Phys. Plasmas 17, 060704.CrossRefGoogle Scholar
Zhang, J., Li, Y.T., Sheng, Z.M., Wei, Z.Y., Dong, Q.L. & Lu, X. (2005). Generation and propagation of hot electrons in laser-plasmas. Appl. Phys. B-Lasers Opt. 80, 957971.CrossRefGoogle Scholar