Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:03:20.824Z Has data issue: false hasContentIssue false

Direct observation of particles with energy >10 MeV/u from laser-induced processes with energy gain in ultra-dense deuterium

Published online by Cambridge University Press:  24 September 2013

Leif Holmlid*
Affiliation:
Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
*
Address correspondence and reprint requests to: Leif Holmlid, Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden. E-mail [email protected]

Abstract

Nuclear fusion in ultra-dense deuterium D(-1) was reported previously to be induced by 0.2 J pulses with 5 ns pulse length, ejecting particles with energies in the MeV range. The ns-resolved signal from D(-1) to two in-line collectors at up to 1 m distance can be observed directly on an oscilloscope, showing particles with energies in the range 1–20 MeV u−1. They are probably mainly protons and deuterons in the form of neutral ultra-dense hydrogen H(-1) fragments. Electrons and photons give only small contributions to the fast signal. The observed signal at several mA peak current corresponds to 1 × 1013 particles released per laser shot and to an energy release >4 J assuming isotropic formation and average particle energy of 3 MeV. This corresponds to an energy gain of 30 in the process. A movable slit close to the laser target gives lateral resolution of the signal generation, showing almost only fast particles from the point of laser impact and penetrating photons from the plasma outside the laser impact point. The observation of multi-MeV particles indicates nuclear fusion, either as a source or as a result.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, P.U. & Holmlid, L. (2009). Ultra-dense deuterium: A possible nuclear fuel for inertial confinement fusion (ICF). Phys. Lett. A 373, 30673070.CrossRefGoogle Scholar
Andersson, P.U. & Holmlid, L. (2010). Deuteron energy of 15 MK in a surface phase of ultra-dense deuterium without plasma formation: Temperature of the interior of the Sun. Phys. Lett. A 374, 28562860.CrossRefGoogle Scholar
Andersson, P.U. & Holmlid, L. (2011). Superfluid ultra-dense deuterium D(-1) at room temperature. Phys. Lett. A 375, 13441347.CrossRefGoogle Scholar
Andersson, P.U. & Holmlid, L. (2012 a). Cluster ions DN+ ejected from dense and ultra-dense deuterium by Coulomb explosions: Fragment rotation and D+ backscattering from ultra-dense clusters in the surface phase. Int. J. Mass Spectrom. 310, 3243.CrossRefGoogle Scholar
Andersson, P.U. & Holmlid, L. (2012 b). Fusion generated fast particles by laser impact on ultra-dense deuterium: Rapid variation with laser intensity. J. Fusion Ener. 31, 249256.CrossRefGoogle Scholar
Andersson, P.U., Holmlid, L. & Fuelling, S.R. (2012). Search for superconductivity in ultra-dense deuterium D(-1) at room temperature: Depletion of D(-1) at field strength >0.05 T. J. Supercond. Novel Magn. 25, 873882.CrossRefGoogle Scholar
Andersson, P.U., Lönn, B. & Holmlid, L. (2011). Efficient source for the production of ultra-dense deuterium D(-1) for laser-induced fusion (ICF). Rev. Sci. Instrum. 82, 013503.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 a). Fusion reactions in high-density hydrogen: A fast route to small-scale fusion? Int. J. Hydr. Energy 34, 487495.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2009 b). High-energy Coulomb explosions in ultra-dense deuterium: Time-of-flight mass spectrometry with variable energy and flight length. Int. J. Mass Spectrom. 282, 7076.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2010 a). Laser-driven nuclear fusion D + D in ultra-dense deuterium: MeV particles formed without ignition. Laser Part. Beams 28, 313317.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2010 b). Laser-induced variable pulse-power TOF-MS and neutral time-of-flight studies of ultra-dense deuterium. Phys. Scripta 81, 045601.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2010 c). Production of ultra-dense deuterium, a compact future fusion fuel. Appl. Phys. Lett. 96, 124103.CrossRefGoogle Scholar
Borovsky, J.E., McComas, D.J. & Barraclough, B.L. (1988). The secondary-electron yield measured for 5–24 MeV protons on aluminum-oxide and gold targets. Nucl. Instr. Meth. B 30, 191195.CrossRefGoogle Scholar
Guénault, T. (2003). Basic Superfluids. London: Taylor and Francis.Google Scholar
Holmlid, L. (2011). High-charge Coulomb explosions of clusters in ultra-dense deuterium D(-1). Int. J. Mass Spectrom. 304, 5156.CrossRefGoogle Scholar
Holmlid, L. (2012 a). MeV particles from laser-initiated processes in ultra-dense deuterium D(-1). Eur. Phys. J. A 48, 11.CrossRefGoogle Scholar
Holmlid, L. (2012 b). Experimental studies and observations of clusters of Rydberg matter and its extreme forms. J. Cluster Sci. 23, 534.CrossRefGoogle Scholar
Holmlid, L. (2012 c). Deuterium clusters DN and mixed K-D and D-H clusters of Rydberg Matter: High temperatures and strong coupling to ultra-dense deuterium. J. Cluster Sci. 23, 95114.CrossRefGoogle Scholar
Holmlid, L. (2013). Laser-induced fusion in ultra-dense deuterium D(-1): Optimizing MeV particle ejection by carrier material selection. Nucl. Instr. Meth. B 296, 6671.CrossRefGoogle Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532CrossRefGoogle Scholar
Hora, H. & Miley, G.H. (2007). Maruhn-Greiner maximum of uranium fission for confirmation of low energy nuclear reactions LENR via a compound nucleus with double magic numbers. J. Fusion Energ. 26, 349355.CrossRefGoogle Scholar
Lipson, A., Heuser, B.J., Castano, C., Miley, G., Lyakhov, B. & Mitin, A. (2005). Transport and magnetic anomalies below 70 K in a hydrogen-cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507.CrossRefGoogle Scholar
Meima, G.R. & Menon, P.G. (2001). Catalyst deactivation phenomena in styrene production. Appl. Catal. A 212, 239245.CrossRefGoogle Scholar
Miley, G.H., Hora, H., Philberth, K, Lipson, A. & Shrestha, P.L. (2009). Radiochemical comparisons on low energy nuclear reactions and uranium. In Low-Energy Nuclear Reactions and New Energy Technologies Source Book (Marwan, J. & Krivit, S.B., Eds.), Vol. 2, p. 235252. Washington, DC: American Chemical Society/Oxford University Press.Google Scholar
Muhler, M., Schlögl, R. & Ertl, G. (1992). The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. 2. Surface chemistry of the active phase. J. Catal. 138, 413444.CrossRefGoogle Scholar
Olofson, F. & Holmlid, L. (2012 a). Detection of MeV particles from ultra-dense protium p(-1): laser-initiated self-compression from p(1). Nucl. Instr. Meth. B 278, 3441.CrossRefGoogle Scholar
Olofson, F. & Holmlid, L. (2012 b). Superfluid ultra-dense deuterium D(-1) on polymer surfaces: structure and density changes at a polymer-metal boundary. J. Appl. Phys. 111, 123502.CrossRefGoogle Scholar
Olofson, F., Ehn, A., Bood, J. & Holmlid, L. (2012). Large intensities of MeV particles and strong charge ejections from laser-induced fusion in ultra-dense deuterium. 39th EPS Conference & 16th Int. Congress on Plasma Physics; P1.105.Google Scholar
Park, S.-T. & Jang, N.H. (2007). The secondary electron yield for high-energy proton bombardment on aluminum target. Bull. Korean Chem. Soc. 28, 12241226.Google Scholar
Slutz, S.A. & Vesey, R.A. (2005). Fast ignition hot spot break-even scaling. Phys. Plasmas 12, 062702.CrossRefGoogle Scholar
Thornton, T.A. & Anno, J.N. (1977). Secondary electron emission from 0.5–2.5-MeV protons and deuterons. J. Appl. Phys. 48, 17181719.CrossRefGoogle Scholar
Winterberg, F. (2010 a). Ultradense Deuterium. J. Fusion Energ. 29, 317321.CrossRefGoogle Scholar
Winterberg, F. (2010 b). Ultra-dense deuterium and cold fusion claims. Phys. Lett. A 374, 27662771.CrossRefGoogle Scholar
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a pre-compressed inertial confinement fusion (ICF) target. Phys. Plasmas 18, 032703.CrossRefGoogle Scholar