Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T03:48:16.320Z Has data issue: false hasContentIssue false

Development of laser-plasma generator for injector of C4+ ions

Published online by Cambridge University Press:  19 January 2012

N.N. Alekseev
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
A.N. Balabaev
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
A.A. Vasilyev
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
Yu.A. Satov*
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
S.M. Savin
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
B.Yu. Sharkov
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
A.V. Shumshurov
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
V.C. Roerich
Affiliation:
State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia
*
Address correspondence and reprint requests to: Yu. A. Satov, State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow, Russia. E-mail: [email protected]

Abstract

The results of the development of the ITEP accelerator carbon ion injector based on a repetition-rate CO2 laser ion source are described. The improvement includes a modified pulsed HV-feeding generator for the discharge formation in the laser gas mixture. The advanced discharge module ensures essential increase of the laser active volume and specific electrical deposition energy. The comparative computer simulations of the discharge characteristics for the improved and the prototype lasers are applied. The design and the output spatial-temporal parameters of the free-running laser “Malish-M” are shown, so the significant increase of the laser power is reached. The spatial characteristics of the laser beam obtained with diffraction calculations are compared to measured radial distribution of the energy density. The target laser intensity and the different channels of the energy loss of the laser beam in the optical scheme are estimated. Finally, the output C4+ current trace of heavy ion injector as well as the injector scheme are shown.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrams, R.L. (1974). Broadening coefficients for the P(20) CO2 laser transition. Appl. Phys. Lett. 25, 609611.CrossRefGoogle Scholar
Barabash, L.Z., Koshkarev, D.G., Lapitskii, Y.I., Latyshev, S.V., Shumshurov, A.V., Bykovskii, Y.A., Golubev, A.A., Kosyrev, Y.P., Krechet, K.I., Haydarov, R.T. & Sharkov, B.Y. (1984). Laser-produced plasma as an ion-source for heavy-ion inertial fusion. Laser Part. Beams 2, 4959.CrossRefGoogle Scholar
Baranov, V.Y., Borisov, V.M., Napartovich, A.P., Napartovich, E.S. & Satov, Y.A. (1976 a). Characteristics of a pulsed CO2 laser using ultraviolet preionization. Sov. Phys. Tech. Phys. 21, 203205.Google Scholar
Baranov, V.Y., Borisov, V.M., Napartovich, A.P., Napartovich, E.S., Satov, Y.A. & Sudakov, V.V. (1976 b). Volume discharge with UV preionization. Sov. J. Plasma Phys. 2, 266269.Google Scholar
Baranov, V.Y., Makarov, K.N., Roerich, V.C., Satov, Y.A., Starostin, A.N., Stepanov, A.E., Sharkov, B.Y., Langbein, K. & Sherwood, T.R. (1996). Study of multicharged heavy ion generation from CO2 laser-produced plasma. Laser Part. Beams 14, 347368.CrossRefGoogle Scholar
Bardsley, J.N. & Biondi, M.A. (1970). Dissociative recombination. In Advances in Atomic and Molecular Physics, vol. 6, edited by Bates, D.R. and Esterman, I., pp. 157, New York: Academic.Google Scholar
Boody, F.P., Höpfl, R., Hora, H. & Kelly, J.C. (1996). Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 14, 443448.CrossRefGoogle Scholar
Burnett, N.H. & Offenberger, A.A. (1973). Simple electrode configuration for UV initiated high-power TEA laser discharges. J. Appl. Phys. 44, 36173618.CrossRefGoogle Scholar
Collier, J., Hall, G., Haseroth, H., Kugler, H., Kuttenberger, A., Langbein, K., Scrivens, R., Sherwood, T., Tambini, J., Sharkov, B., Shumshurov, A. & Masek, K. 1996. The CERN laser-ion source. Laser Part. Beams 14, 283292.CrossRefGoogle Scholar
Dubenkov, V.P., Sharkov, B., Golubev, A., Shumshurov, A., Shamaev, O., Roudskoy, I., Streltsov, A., Satov, Y., Makarov, K., Smakovsky, Y., Hoffmann, D., Laux, W., Müller, R.W., Spädtke, P., Stöckl, C., Wolf, B. & Jacoby, J. (1996). Acceleration of Ta10+ ions produced by laser ion source in RFQ “MAXILAC”. Laser Part. Beams. 14, 385392.CrossRefGoogle Scholar
Ernst, G.J. & Boer, A.G. (1980). Experimental determination of the electron-avalanche and the electron-ion recombination coefficient. Opt. Comm. 34, 235239.CrossRefGoogle Scholar
Feoktistov, L.P., Charushin, A.V., Louzhnov, V.G., Roerikh, V.C., Satov, Y.A., Shchepetov, N.G., Smakovskii, Y.B., Starodub, A.N., Stepanov, A.E. & Zaretskii, N.P. (2002). The “Katran” CO2-laser with high specific output power and stable parameters. J. Russian Laser Res. 23, 503516.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393438.CrossRefGoogle Scholar
Kondrashev, S.A., Collier, J. & Sherwood, T.R. (1999). Space-charge compensation of highly charged ion beam from laser ion source. Laser Part. Beams 14, 323333.CrossRefGoogle Scholar
Kondrashev, S., Mescheryakov, N., Sharkov, B., Shumshurov, A., Khomenko, S., Makarov, K., Satov, Yu. & Smakovskii, Yu. (1994). Production of He-like light and medium mass ions in laser ion source. Rev. Sci. Instrum. 71, 14091412.CrossRefGoogle Scholar
Kozochkin, S.M., Makarov, K.N., Satov, Y.A., Strel'tsov, A.P., Rerikh, V.K., Starostin, A.N., Stepanov, A.E., Shamaev, O.B., Sharkov, B.Y., Haseroth, H., Langbein, K., Sellmair, J. & Sherwood, T.R. (1994). On the use of multicharge ions energy spectra for plasma diagnostics. Fiz. Plazmy 20, 103105.Google Scholar
Lachambre, J.-L., Gilbert, J., Rheault, F., Fortin, R. & Blanchard, M. 1973. Performance characteristics of a TEA double-discharge grid amplifier. IEEE J. of Quantum Electr. QE-9, 459468.CrossRefGoogle Scholar
Makarov, K.N., Satov, Y.A., Strel'tsov, A.P., Rerikh, V.K., Stepanov, A.E., Shamaev, O.B., Sharkov, B.Y., Hazerot, H., Langbein, K. & Cherveud, T.R. (1994). Generation of highly charged ions of heavy elements in a CO2 laser plasma. JETP 79, 891898.Google Scholar
Makarov, K.N., Nishchuk, S.G., Rerikh, V.K., Satov, Y.A., Skobelev, I.Y., Smakovskii, Y.B., Starostin, A.N., Stepanov, A.E., Pikuz, T.A., Faenov, A.Y. & Khomenko, S.V. (2000). Study of the ion composition of an expanding magnesium plasma produced by a CO2 Laser. JETP Lett. 72, 710.CrossRefGoogle Scholar
Manes, K.R. & Seguin, H.J. (1972). Analysis of the CO2 TEA laser. J. Appl. Phys. 43, 50735078.CrossRefGoogle Scholar
Mescheryakov, N.D., Alexeev, N.N., Balabaev, A.N., Kondrashev, S.A., Konyukov, K.V., Nikolaev, V.I., Roudskoy, I.V., Savin, S.M., Sharkov, B.Y. & Shumshurov, A.V. (2002). Laser ion source of multicharged ions for ITEP accumulator facility. Laser Part. Beams 20, 455458.CrossRefGoogle Scholar
Monchinsky, V.A., Kalagin, I.V. & Govorov, A.I. (1996). Laser ion source of Synchrophasotron and Nuclotron in Dubna. Laser Part. Beams 14, 439442.CrossRefGoogle Scholar
Ogawa, M., Yoshida, M., Nakajima, M., Hasegawa, J., Fukata, S., Horioka, K. & Oguri, Y. (2003). High-current laser ion source based on a low-power laser. Laser Part. Beams 21, 633638.CrossRefGoogle Scholar
Osipov, V.V. (2000). Self-sustained volume discharge. Phys.-Uspekhi 43, 221241.CrossRefGoogle Scholar
Raizer, Y.P. (1997). Gas Discharge Physics. New York: Springer.Google Scholar
Satov, Y.A., Smakovskii, Y.B. & Khomenko, S.V. (1997). Discharge gas laser apparatus. Russian Federation Patent #RU2096881-C1, H01S-003/097, 199828.Google Scholar
Satov, Yu., Sharkov, B., Smakovski, Yu., Makarov, K., Stepanov, A., Roerich, V., Kondrashev, S., Shumshurov, A. & Balabaev, A. (2004 a). The “SKATE” CO2 gigawatt laser for a laser-plasma generator of ions and nuclei. J. Russian Laser Res. 25, 524534.CrossRefGoogle Scholar
Satov, Y.A., Makarov, K.N., Stepanov, A.E., Roerich, V.C. & Smakovski, Y.B. (2004 b). “Laser ion source of multicharged heavy and light ions based on CO2-laser”. Preprint of TRINITI 0112-A, Troitsk, Moscow Region, pp 1–50.Google Scholar
Satov, Y., Sharkov, B., Haseroth, H., Smakovski, Y., Makarov, K., Kondrashev, S., Roerich, V., Stepanov, A., Kugler, H., Scrivens, R., Camut, O., Shumshurov, A., Balabaev, A. & Charushin, A. (2004 c). High-power CO2 laser system with repetition rate operation for high current multicharged heavy ion generations. J. Russian Laser Res. 25, 205216.CrossRefGoogle Scholar
Satov, YA. (2006). Formation of powerful CO2 laser pulses and their application in laser-plasma research and efficient high charge state ion generation: PH.D thesis. Department of Russian atomic energy, Russia.Google Scholar
Sharkov, B.Y. & Scrivens, R. (2006). Laser ion source. IEEE Trans. Plasma Sci. 33, 17841785.Google Scholar
Sharkov, B., Alexeev, N., Alekseev, P., Balabaev, A., Nikolaev, V., Satov, Y., Schegolev, V., Shumshurov, A. & Zavodov, V. (2008). Experiments with Fe-ion beam generation, acceleration and accumulation in ITEP TWAC facility. In: Proceedings of EPAC08, Genoa, Italy, 352354.Google Scholar
Stepanov, A.E., Volkov, G.S., Zaitsev, V.I., Makarov, K.N., Satov, Y.A., Rerikh, V.K. (2003 a). Temperature dynamics in a multicharge ion plasma generated by CO2 laser pulses. Techn. Phys.Lett. 29, 191193.CrossRefGoogle Scholar
Stepanov, A.E., Satov, Y.A., Makarov, K.N., Roerich, V.C., Smakovskiy, Y.B., Maluta, D.D. & Starostin, AN. (2003 b). Study of angular dependencies of ion component parameters in CO2 laser-produced plasma. Plasma Phys. Contr. Fusion 45, 12611281.CrossRefGoogle Scholar