Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T14:17:07.979Z Has data issue: false hasContentIssue false

Design and optimization of a laser-PIXE beamline for material science applications

Published online by Cambridge University Press:  25 September 2019

A. Morabito*
Affiliation:
ELI-ALPS, ELI-HU Non profit Ltd., Dugonics ter 13, Szeged, 6720, Hungary INFN and University of Rome, Via Scarpa 14, 00161Roma, Italy
M. Scisciò
Affiliation:
INFN and University of Rome, Via Scarpa 14, 00161Roma, Italy ENEA, Fusion and Nuclear Safety Department, C. R. Frascati, Via E. Fermi 45, Frascati, 00044Roma, Italy
S. Veltri
Affiliation:
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50422Wroclaw, Poland
M. Migliorati
Affiliation:
INFN and University of Rome, Via Scarpa 14, 00161Roma, Italy
P. Antici
Affiliation:
INRS-EMT, 1650 Boul. Lionel Boulet, J3X 1S2, Varennes, Canada
*
Author for correspondence: A. Morabito, ELI-ALPS, ELI-HU Non profit Ltd., Dugonics ter 13, Szeged, 6720, Hungary. E-mail: [email protected]

Abstract

Multi-MeV proton beams can be generated by irradiating thin solid foils with ultra-intense (>1018 W/cm2) short laser pulses. Several of their characteristics, such as high bunch charge and short pulse duration, make them a complementary alternative to conventional radio frequency-based accelerators. A potential material science application is the chemical analysis of cultural heritage (CH) artifacts. The complete chemistry of the bulk material (ceramics, metals) can be retrieved through sophisticated nuclear techniques such as particle-induced X-ray emission (PIXE). Recently, the use of laser-generated proton beams was introduced as diagnostics in material science (laser-PIXE or laser-driven PIXE): Coupling laser-generated proton sources to conventional beam steering devices successfully enhances the capture and transport of the laser-accelerated beam. This leads to a reduction of the high divergence and broad energy spread at the source. The design of our hybrid beamline is composed of an energy selector, followed by permanent quadrupole magnets aiming for better control and manipulation of the final proton beam parameters. This allows tailoring both, mean proton energy and spot sizes, yet keeping the system compact. We performed a theoretical study optimizing a beamline for laser-PIXE applications. Our design enables monochromatizing the beam and shaping its final spot size. We obtain spot sizes ranging between a fraction of mm up to cm scale at a fraction of nC proton charge per shot. These results pave the way for a versatile and tunable laser-PIXE at a multi-Hz repetition rate using modern commercially available laser systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antici, P, Fuchs, J, Atzeni, S, Benuzzi, A, Brambrink, E, Esposito, M, Koenig, M, Ravasio, A, Schreiber, J, Schiavi, A and Audebert, P (2006) Isochoric heating of matter by laser-accelerated high-energy protons. Journal de Physique IV (Proceedings) 133, 10771079.CrossRefGoogle Scholar
Antici, P, Fazi, M, Lombardi, A, Migliorati, M, Palumbo, L, Audebert, P and Fuchs, J (2008) Numerical study of a linear accelerator using laser-generated proton beams as a source. Journal of Applied Physics 104, 124901.CrossRefGoogle Scholar
Antici, P, Boella, E, Chen, SN, Andrews, DS, Barberio, M, Böker, J, Cardelli, F, Feugeas, JL, Glesser, M, Nicolaï, P, Romagnani, L, Scisciò, M, Starodubtsev, M, Willi, O, Kieffer, JC, Tikhonchuk, V, Pépin, H, Silva, LO, d’ Humières, E and Fuchs, J (2017) Acceleration of collimated 45 MeV protons by collisionless shocks driven in low-density, large-scale gradient plasmas by a 1020 W/cm2, 1 μm laser. Scientific Reports 7, 16463.CrossRefGoogle Scholar
Barberet, P, Incerti, S, Andersson, F, Delalee, F, Serani, L and Moretto, P (2009) Technical description of the CENBG nanobeam line. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267, 20032007.CrossRefGoogle Scholar
Barberio, M and Antici, P (2019) Laser-PIXE using laser-accelerated proton beams. Scientific Reports 9, 6855.CrossRefGoogle ScholarPubMed
Barberio, M, Scisciò, M, Veltri, S and Antici, P (2016) Fabrication of nanostructured targets for improved laser-driven proton acceleration. Superlattices and Microstructures 95, 159163.CrossRefGoogle Scholar
Barberio, M, Scisciò, M, Vallières, S, Veltri, S, Morabito, A and Antici, P (2017 a) Laser-generated proton beams for high-precision ultra-fast crystal synthesis. Scientific Reports 7, 12522.CrossRefGoogle ScholarPubMed
Barberio, M, Veltri, S, Scisciò, M and Antici, P (2017 b) Laser-accelerated proton beams as diagnostics for cultural heritage. Scientific Reports 7, 40415.CrossRefGoogle ScholarPubMed
Barberio, M, Scisciò, M, Vallières, S, Cardelli, F, Chen, SN, Famulari, G, Gangolf, T, Revet, G, Schiavi, A, Senzacqua, M and Antici, P (2018 a) Laser-accelerated particle beams for stress testing of materials. Nature Communications 9, 372.CrossRefGoogle ScholarPubMed
Barberio, M, Vallières, S, Scisciò, M, Kolhatkar, G, Ruediger, A and Antici, P (2018 b) Graphitization of diamond by laser-accelerated proton beams. Carbon 139, 531537.CrossRefGoogle Scholar
Bertrand, L, Schöeder, S, Anglos, D, Breese, MBH, Janssens, K, Moini, M and Simon, A (2015) Mitigation strategies for radiation damage in the analysis of ancient materials. TrAC – Trends in Analytical Chemistry 66, 128145.CrossRefGoogle Scholar
Bolton, PR, Borghesi, M, Brenner, C, Carroll, DC, De Martinis, C, Fiorini, F, Flacco, A, Floquet, V, Fuchs, J, Gallegos, P, Giove, D, Green, JS, Green, S, Jones, B, Kirby, D, McKenna, P, Neely, D, Nuesslin, F, Prasad, R, Reinhard, S, Roth, M, Schrammm, U, Scott, GG, Ter-Avetisyan, S, Tolley, M, Turchettin, G and Wilkens, JJ (2014) Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams. Physica Medica 30, 255270.CrossRefGoogle ScholarPubMed
Bulanov, S, Esirkepov, TZ, Khoroshkov, V, Kuznetsov, A and Pegoraro, F (2002) Oncological hadrontherapy with laser ion accelerators. Physics Letters A 299, 240247.CrossRefGoogle Scholar
Bulanov, SS, Bychenkov, VY, Chvykov, V, Kalinchenko, G, Litzenberg, DW, Matsuoka, T, Thomas, AGR, Willingale, L, Yanovsky, V, Krushelnick, K and Maksimchuk, A (2010) Generation of GeV protons from 1 PW laser interaction with near critical density targets. Physics of Plasmas 17, 043105.CrossRefGoogle ScholarPubMed
Busold, S, Schumacher, D, Deppert, O, Brabetz, C, Frydrych, S, Kroll, F, Joost, M, Al-Omari, H, Blažević, A, Zielbauer, B, Hofmann, I, Bagnoud, V, Cowan, TE and Roth, M (2013) Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source. Physical Review Special Topics – Accelerators and Beams 16, 101302.CrossRefGoogle Scholar
Busold, S, Schumacher, D, Deppert, O, Brabetz, C, Kroll, F, Blažević, A, Bagnoud, V and Roth, M (2014) Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV. Physical Review Special Topics – Accelerators and Beams 17, 031302.CrossRefGoogle Scholar
Calligaro, T, Gonzalez, V and Pichon, L (2015) PIXE analysis of historical paintings: is the gain worth the risk? Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 363, 135143.CrossRefGoogle Scholar
Chen, SN, Gauthier, M, Higginson, DP, Dorard, S, Mangia, F, Riquier, R, Atzeni, S, Marquès, J-R and Fuchs, J (2014) Monochromatic short pulse laser produced ion beam using a compact passive magnetic device. Review of Scientific Instruments 85, 043504.CrossRefGoogle ScholarPubMed
Chiari, M, Migliori, A and Mandò, PA (2002) Investigation of beam-induced damage to ancient ceramics in external-PIXE measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 188, 151155.CrossRefGoogle Scholar
Crandall, KR and Rusthoi, DP (1997) TSTEP (Los Alamos National Laboratory Report LA-UR-97-886).Google Scholar
Dromey, B, Coughlan, M, Senje, L, Taylor, M, Kuschel, S, Villagomez-Bernabe, B, Stefanuik, R, Nersisyan, G, Stella, L, Kohanoff, J, Borghesi, M, Currell, F, Riley, D, Jung, D, Wahlström, C-G, Lewis, CLS and Zepf, M (2016) Picosecond metrology of laser-driven proton bursts. Nature Communications 7, 10642.CrossRefGoogle ScholarPubMed
Dunne, M (2006) Applied physics: laser-driven particle accelerators. Science 312, 374376.CrossRefGoogle ScholarPubMed
Eichner, T, Grüner, F, Becker, S, Fuchs, M, Habs, D, Weingartner, R, Schramm, U, Backe, H, Kunz, P and Lauth, W (2007) Miniature magnetic devices for laser-based, table-top free-electron lasers. Physical Review Special Topics – Accelerators and Beams 10, 082401.CrossRefGoogle Scholar
Ezeh, GC, Obioh, lB, Asubiojo, OI, Chiari, M, Nava, S, Calzolai, G, Lucarelli, F and Nuviadenu, C (2015) The complementarity of PIXE and PIGE techniques: a case study of size segregated airborne particulates collected from a Nigeria city. Applied Radiation and Isotopes 103, 8292.CrossRefGoogle ScholarPubMed
Fourmaux, S, Buffechoux, S, Albertazzi, B, Capelli, D, Lévy, A, Gnedyuk, S, Lecherbourg, L, Lassonde, P, Payeur, S, Antici, P, Pépin, H, Marjoribanks, RS, Fuchs, J and Kieffer, JC (2013) Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses. Physics of Plasmas 20, 013110.CrossRefGoogle Scholar
Fuchs, J, Sentoku, Y, Karsch, S, Cobble, J, Audebert, P, Kemp, A, Nikroo, A, Antici, P, Brambrink, E, Blazevic, A, Campbell, EM, Fernández, JC, Gauthier, J-C, Geissel, M, Hegelich, M, Pépin, H, Popescu, H, Renard-LeGalloudec, N, Roth, M, Schreiber, J, Stephens, R and Cowan, TE (2005) Comparison of laser ion acceleration from the front and rear surfaces of thin foils. Physical Review Letters 94, 045004.CrossRefGoogle ScholarPubMed
Giuntini, L, Massi, M and Calusi, S (2007) The external scanning proton microprobe of Firenze: a comprehensive description. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 576, 266273.CrossRefGoogle Scholar
Grassi, N, Migliori, A, Mandò, PA and Calvo del Castillo, H (2005) Differential PIXE measurements for the stratigraphic analysis of the paintingMadonna dei fusi by Leonardo da Vinci. X-Ray Spectrometry 34, 306309.CrossRefGoogle Scholar
Green, JS, Robinson, APL, Booth, N, Carroll, DC, Dance, RJ, Gray, RJ, MacLellan, DA, McKenna, P, Murphy, CD, Rusby, D and Wilson, L (2014) High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions. Applied Physics Letters 104, 214101.CrossRefGoogle Scholar
Halbach, K and Holsinger, RF (1976) Superfish – a computer program for evaluation of RF cavities with cylindrical symmetry. Particle Accelerators 7, 213222.Google Scholar
Kar, S, Ahmed, H, Prasad, R, Cerchez, M, Brauckmann, S, Aurand, B, Cantono, G, Hadjisolomou, P, Lewis, CLS, Macchi, A, Nersisyan, G, Robinson, APL, Schroer, AM, Swantusch, M, Zepf, M, Willi, O and Borghesi, M (2016) Guided post-acceleration of laser-driven ions by a miniature modular structure. Nature Communications 7, 10792.CrossRefGoogle ScholarPubMed
Kraft, SD, Obst, L, Metzkes-Ng, J, Schlenvoigt, H-P, Zeil, K, Michaux, S, Chatain, D, Perin, J-P, Chen, SN and Fuchs, J (2018) First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target. Plasma Physics and Controlled Fusion 60, 044010.CrossRefGoogle Scholar
Kühn, S, Dumergue, M, Kahaly, S, Mondal, S, Füle, M, Csizmadia, T, Farkas, B, Major, B, Várallyay, Z, Cormier, E, Kalashnikov, M, Calegari, F, Devetta, M, Frassetto, F, Månsson, E, Poletto, L, Stagira, S, Vozzi, C, Nisoli, M, Rudawski, P, Maclot, S, Campi, F, Wikmark, H, Arnold, CL, Hey, CM, Johnsson, P, L'Huillier, A, Lopez-Martens, R, Haessler, S, Bocoum, M, Boehle, F, Vernier, A, Iaquaniello, G, Skantzakis, E, Papadakis, N, Kalpouzos, C, Tzallas, P, Lépine, F, Charalambidis, D, Varjú, K, Osvay, K and Sansone, G (2017) The ELI-ALPS facility: the next generation of attosecond sources. Journal of Physics B: Atomic, Molecular and Optical Physics 50, 132002.CrossRefGoogle Scholar
Lazic, V, Vadrucci, M, Fantoni, R, Chiari, M, Mazzinghi, A and Gorghinian, A (2018) Applications of laser-induced breakdown spectroscopy for cultural heritage: a comparison with X-ray fluorescence and particle induced X-ray emission techniques. Spectrochimica Acta Part B: Atomic Spectroscopy 149, 114.CrossRefGoogle Scholar
Macchi, A (2017) A review of laser-plasma ion acceleration. Available at: http://arxiv.org/abs/1712.06443Google Scholar
Malka, V, Fritzler, S, Lefebvre, E, d'Humières, E, Régis, F, Grillon, G, Albaret, C, Meyroneinc, S, Chambaret, J-P, Antonetti, A and Hulin, D (2004) Practicability of protontherapy using compact laser systems. Medical Physics 31, 15871592.CrossRefGoogle ScholarPubMed
Mancic, A, Robiche, J, Antici, P, Audebert, P, Blancard, C, Combis, P, Dorchies, F, Faussurier, G, Fourmaux, S, Harmande, M, Kodama, R, Lancia, L, Mazevet, S, Nakatsutsumi, M, Peyrussee, O, Recoules, V, Renaudin, P, Shepherd, R and Fuchs, J (2010) Isochoric heating of solids by laser-accelerated protons: experimental characterization and self-consistent hydrodynamic modeling. High Energy Density Physics 6, 2128.CrossRefGoogle Scholar
Mandò, PA, Fedi, ME and Grassi, N (2011) The present role of small particle accelerators for the study of Cultural Heritage. The European Physical Journal Plus 126, 41.CrossRefGoogle Scholar
Marteau, F, Ghaith, A, N'Gotta, P, Benabderrahmane, C, Valléau, M, Kitegi, C, Loulergue, A, Vétéran, J, Sebdaoui, M, André, T, Le Bec, G, Chavanne, J, Vallerand, C, Oumbarek, D, Cosson, O, Forest, F, Jivkov, P, Lancelot, JL and Couprie, ME (2017) Variable high gradient permanent magnet quadrupole (QUAPEVA). Applied Physics Letters 111, 253503.CrossRefGoogle Scholar
Masood, U, Bussmann, M, Cowan, TE, Enghardt, W, Karsch, L, Kroll, F, Schramm, U and Pawelke, J (2014) A compact solution for ion beam therapy with laser accelerated protons. Applied Physics B 117, 4152.CrossRefGoogle Scholar
Menu, M, Calligaro, T, Salomon, J, Amsel, G and Moulin, J (1990) The dedicated accelerator-based IBA facility AGLAE at the Louvre. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 45, 610614.CrossRefGoogle Scholar
Migliorati, M, Bacci, A, Benedetti, C, Chiadroni, E, Ferrario, M, Mostacci, A, Palumbo, L, Rossi, AR, Serafini, L and Antici, P (2013) Intrinsic normalized emittance growth in laser-driven electron accelerators. Physical Review Special Topics – Accelerators and Beams 16, 011302.CrossRefGoogle Scholar
Mondal, S, Shirozhan, M, Ahmed, N, Bocoum, M, Boehle, F, Vernier, A, Haessler, S, Lopez-Martens, R, Sylla, F, Sire, C, Quéré, F, Nelissen, K, Varjú, K, Charalambidis, D and Kahaly, S (2018) Surface plasma attosource beam lines at ELI-ALPS. Journal of the Optical Society of America B 35, A93.CrossRefGoogle Scholar
Morrison, JT, Feister, S, Frische, KD, Austin, DR, Ngirmang, GK, Murphy, NR, Orban, C, Chowdhury, EA and Roquemore, WM (2018) Corrigendum: MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction (2018 New J. Phys. 20 022001). New Journal of Physics 20, 069501.CrossRefGoogle Scholar
Nakamura, S, Ikegami, M, Iwashita, Y, Shirai, T, Tongu, H, Souda, H, Daido, H, Mori, M, Kado, M, Sagisaka, A, Ogura, K, Nishiuchi, M, Orimo, S, Hayashi, Y, Yogo, A, Pirozhkov, AS, Bulanov, SV, Esirkepov, T, Nagashima, A, Kimura, T, Tajima, T, Takeuchi, T, Fukumi, A, Li, Z and Noda, A (2007) High-quality laser-produced proton beam realized by the application of a synchronous RF electric field. Japanese Journal of Applied Physics 46, L717L720.CrossRefGoogle Scholar
Nilsson, H, Andersson, J, Engström, L, Lundberg, H and Hartman, H (2019) Experimental transition probabilities for 4p – 4d spectral lines in V II. Astronomy & Astrophysics 622, A154.CrossRefGoogle Scholar
Nirkko, M, Braccini, S, Ereditato, A, Kreslo, I, Scampoli, P and Weber, M (2013) An adjustable focusing system for a 2 MeV H − ion beam line based on permanent magnet quadrupoles. Journal of Instrumentation 8, P02001.CrossRefGoogle Scholar
Nishiuchi, M, Daito, I, Ikegami, M, Daido, H, Mori, M, Orimo, S, Ogura, K, Sagisaka, A, Yogo, A, Pirozhkov, AS, Sugiyama, H, Kiriyama, H, Okada, H, Kanazawa, S, Kondo, S, Shimomura, T, Tanoue, M, Nakai, Y, Sasao, H, Wakai, D, Sakaki, H, Bolton, P, Choi, IW, Sung, JH, Lee, J, Oishi, Y, Fujii, T, Nemoto, K, Souda, H, Noda, A, Iseki, Y and Yoshiyuki, T (2009) Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets. Applied Physics Letters 94, 061107.CrossRefGoogle Scholar
Passoni, M, Fedeli, L and Mirani, F (2019) Superintense laser-driven ion beam analysis. Scientific Reports 9, 9202.CrossRefGoogle ScholarPubMed
Patel, PK, Mackinnon, AJ, Key, MH, Cowan, TE, Foord, ME, Allen, M, Price, DF, Ruhl, H, Springer, PT and Stephens, R (2003) Isochoric heating of solid-density matter with an ultrafast proton beam. Physical Review Letters 91, 125004.CrossRefGoogle ScholarPubMed
Pichon, L, Calligaro, T, Lemasson, Q, Moignard, B and Pacheco, C (2015) Programs for visualization, handling and quantification of PIXE maps at the AGLAE facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 363, 4854.CrossRefGoogle Scholar
Radepont, M, Lemasson, Q, Pichon, L, Moignard, B and Pacheco, C (2018) Towards a sharpest interpretation of analytical results by assessing the uncertainty of PIXE/RBS data at the AGLAE facility. Measurement 114, 501507.CrossRefGoogle Scholar
Re, A, Angelici, D, Giudice, AL, Corsi, J, Allegretti, S, Biondi, AF, Gariani, G, Calusi, S, Gelli, N, Giuntini, L, Massi, M, Taccetti, F, La Torre, L, Rigato, V and Pratesi, G (2015) Ion beam analysis for the provenance attribution of lapis lazuli used in glyptic art: the case of the “Collezione Medicea.”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 348, 278284.CrossRefGoogle Scholar
Romano, F, Schillaci, F, Cirrone, GAP, Cuttone, G, Scuderi, V, Allegra, L, Amato, A, Amico, A, Candiano, G, De Luca, G, Gallo, G, Giordanengo, S, Fanola Guarachi, L, Korn, G, Larosa, G, Leanza, R, Manna, R, Marchese, V, Marchetto, F, Margarone, D, Milluzzo, G, Petringa, G, Pipek, J, Pulvirenti, S, Rizzo, D, Sacchi, R, Salamone, S, Sedita, M and Vignati, A (2016) The ELIMED transport and dosimetry beam line for laser-driven ion beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 829, 153158.CrossRefGoogle Scholar
Roso, L (2018) High repetition rate Petawatt lasers. EPJ Web of Conferences 167, 01001.CrossRefGoogle Scholar
Santos, HC, Pappalardo, CCL, Catalano, R, Orlando, A and Romano, FRFP (2016) Identification of forgeries in historical enamels by combining the non-destructive scanning XRF imaging and alpha-PIXE portable techniques. Microchemical Journal 124, 241246.CrossRefGoogle Scholar
Schollmeier, M, Becker, S, Geißel, M, Flippo, KA, Blažević, A, Gaillard, SA, Gautier, DC, Grüner, F, Harres, K, Kimmel, M, Nürnberg, F, Rambo, P, Schramm, U, Schreiber, J, Schütrumpf, J, Schwarz, J, Tahir, NA, Atherton, B, Habs, D, Hegelich, BM and Roth, M (2008) Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Physical Review Letters 101, 055004.CrossRefGoogle ScholarPubMed
Schreiner, M, Melcher, M and Uhlir, K (2007) Scanning electron microscopy and energy dispersive analysis: applications in the field of cultural heritage. Analytical and Bioanalytical Chemistry 387, 737747.CrossRefGoogle ScholarPubMed
Scisciò, M, Migliorati, M, Palumbo, L and Antici, P (2018) Design and optimization of a compact laser-driven proton beam line. Scientific Reports 8, 6299. doi:10.1038/s41598-018-24391-2CrossRefGoogle Scholar
Scuderi, V, Bijan Jia, S, Carpinelli, M, Cirrone, GAP, Cuttone, G, Korn, G, Licciardello, T, Maggiore, M, Margarone, D, Pisciotta, P, Romanob, F, Schillaci, F, Stancampiano, C and Tramontana, A (2014) Development of an energy selector system for laser-driven proton beam applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 740, 8793.CrossRefGoogle Scholar
Sharma, A (2018) High energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target. Scientific Reports 8, 2191.CrossRefGoogle ScholarPubMed
Sharma, A, Tibai, Z, Hebling, J and Fülöp, JA (2018) Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses. Physics of Plasmas 25, 033111.CrossRefGoogle Scholar
Sorieul, S, Alfaurt, P, Daudin, L, Serani, L and Moretto, P (2014) Aifira: an ion beam facility for multidisciplinary research. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 332, 6873.CrossRefGoogle Scholar
Ter-Avetisyan, S, Schnürer, M, Polster, R, Nickles, PV and Sandner, W (2008) First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser and Particle Beams 26, 637642.CrossRefGoogle Scholar
Vallières, S, Puyuelo-Valdes, P, Salvadori, M, Bienvenue, C, Payeur, S, d'Humières, E and Antici, P (2019) The laser-driven ion acceleration beam line on the ALLS 200 TW for testing nanowire targets. In Esarey, E, Schroeder, CB and Schreiber, J (eds), Laser Acceleration of Electrons, Protons, and Ions V, SPIE, p. 2. http://spie.org/Publications/Proceedings/Paper/10.1117/12.2520178CrossRefGoogle Scholar
Wilks, SC, Kruer, WL, Tabak, M and Langdon, AB (1992) Absorption of ultra-intense laser pulses. Physical Review Letters 69, 13831386.CrossRefGoogle ScholarPubMed
Young, LM (1996) TRACE3D. (LANL Report LA-UR-96-1835).Google Scholar
Zucchiatti, A and Agulló-Lopez, F (2012) Potential consequences of ion beam analysis on objects from our cultural heritage: an appraisal. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 278, 106114.CrossRefGoogle Scholar
Zucchiatti, A and Redondo-Cubero, A (2014) Ion beam analysis: new trends and challenges. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 331, 4854.CrossRefGoogle Scholar