Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T08:50:18.943Z Has data issue: false hasContentIssue false

Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets

Published online by Cambridge University Press:  13 September 2011

C.M. Brenner*
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, United Kingdom Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
J.S. Green
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
A.P.L. Robinson
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
D.C. Carroll
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, United Kingdom
B. Dromey
Affiliation:
Centre for Plasma Physics, Queen's University Belfast, Belfast, United Kingdom
P.S. Foster
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
S. Kar
Affiliation:
Centre for Plasma Physics, Queen's University Belfast, Belfast, United Kingdom
Y.T. Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
K. Markey
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom Centre for Plasma Physics, Queen's University Belfast, Belfast, United Kingdom
C. Spindloe
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
M.J.V. Streeter
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
M. Tolley
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
C.-G. Wahlström
Affiliation:
Department of Physics, Lund University, Lund, Sweden
M.H. Xu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
M. Zepf
Affiliation:
Centre for Plasma Physics, Queen's University Belfast, Belfast, United Kingdom
P. McKenna
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, United Kingdom
D. Neely
Affiliation:
Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon, United Kingdom
*
Address correspondence and reprint requests to: Ceri M. Brenner, Room 2-60, R1, Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxon, OX11 0QX, United Kingdom. E-mail: [email protected]

Abstract

The scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15–380 mJ at intensities of 1016–1018 W/cm2. The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M., Sentoku, Y., Audebert, P., Blazevic, A., Cowan, T., Fuchs, J., Gauthier, J.C., Geissel, M., Hegelich, M., Karsch, S., Morse, E., Patel, P.K. & Roth, M. (2003). Proton spectra from ultraintense laser-plasma interaction with thin foils: Experiments, theory, and simulation. Phys. Plasmas 10, 32833289.CrossRefGoogle Scholar
Andreev, A., Levy, A., Ceccotti, T., Thaury, C., Platonov, K., Loch, R.A. & Martin, P. (2008). Fast-Ion energy-flux enhancement from ultrathin foils irradiated by intense and high-contrast short laser pulses. Phys. Rev. Lett. 101, 155002/1–4.CrossRefGoogle ScholarPubMed
Andreev, A.A., Steinke, S., Sokollik, T., Schnurer, M., Ter, Avetsiyan, S., Platonov, K.Y. & Nickles, P.V. (2009). Optimal ion acceleration from ultrathin foils irradiated by a profiled laser pulse of relativistic intensity. Phys. Plasmas 16, 19.CrossRefGoogle Scholar
Beg, F.N., Bell, A.R., Dangor, A.E., Danson, C.N., Fews, A.P., Glinsky, M.E., Hammel, B.A., Lee, P., Norreys, P.A. & Tatarakis, M. (1997). A study of picosecond laser-solid interactions up to 1019 Wcm−2. Phys. Plasmas 4, 447457.CrossRefGoogle Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Carroll, D.C., Brummitt, P., Neely, D., Lindau, F., Lundh, O., Wahlstrom, C.G. & Mckenna, P. (2010). A modified Thomson parabola spectrometer for high resolution multi-MeV ion measurements-Application to laser-driven ion acceleration. Nucl. Instr. Meth. Phys. Res. Sect. A 620, 2327.CrossRefGoogle Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.CrossRefGoogle ScholarPubMed
Cobble, J.A., Johnson, R.P., Cowan, T.E., Renard-Le Galloudec, N. & Allen, M. (2002). High resolution laser-driven proton radiography. J. Appl. Phys. 92, 17751779.CrossRefGoogle Scholar
Esirkepov, T., Yamagiwa, M. & Tajima, T. (2006). Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96, 105001/1–4.CrossRefGoogle ScholarPubMed
Fuchs, J., Antici, P., D'humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, R. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Green, J.S., Borghesi, M., Brenner, C.M., Carroll, D.C., Dover, N.P., Foster, P.S., Gallegos, P., Green, S., Kirby, D., Kirkby, K.J., Mckenna, P., Merchant, M.J., Najmudin, Z., Palmer, C.A.J., Parker, D., Prasad, R., Quinn, K.E., Rajeev, P.P., Read, M.P., Romagnani, L., Schreiber, J., Streeter, M.J.V., Tresca, O., Zepf, M. & Neely, D. (2011). Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams. SPIE. http://spiedigitallibrary.org/proceedings/resource/2/psisdg/8079/1/807919_1?isAuthorized=no.Google Scholar
Green, J.S., Carroll, D.C., Brenner, C., Dromey, B., Foster, P.S., Kar, S., Li, Y.T., Markey, K., Mckenna, P., Neely, D., Robinson, A.P.L., Streeter, M.J.V., Tolley, M., Wahlstrom, C.G., Xu, M.H. & Zepf, M. (2010). Enhanced proton flux in the MeV range by defocused laser irradiation. New J. Phys. 12, 085012/1–10.CrossRefGoogle Scholar
Lefebvre, E., Carrie, M. & Nuter, R. (2009). Ion acceleration with high-intensity lasers and application to isochoric heating. Comp. Rendus Phys. 10, 197206.CrossRefGoogle Scholar
Lefebvre, E., Gremillet, L., Levy, A., Nuter, R., Antici, P., Carrie, M., Ceccotti, T., Drouin, M., Fuchs, J., Malka, V. & Neely, D. (2010). Proton acceleration by moderately relativistic laser pulses interacting with solid density targets. New J. Phys. 12, 045017/1–15.CrossRefGoogle Scholar
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006/1–4CrossRefGoogle ScholarPubMed
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Phuoc, K.T. (2008). Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447453.CrossRefGoogle Scholar
Mckenna, P., Ledingham, K.W.D., Spencer, I., Mccany, T., Singhal, R.P., Ziener, C., Foster, P.S., Divall, E.J., Hooker, C.J., Neely, D., Langley, A.J., Clarke, R.J., Norreys, P.A., Krushelnick, K. & Clark, E.L. (2002). Characterization of multiterawatt laser-solid interactions for proton acceleration. Rev. Sci. Instr. 73, 41764184.CrossRefGoogle Scholar
Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., Wahlstrom, C.G. & Mckenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Appl. Phys. Lett. 89, 021502/1–3.CrossRefGoogle Scholar
Oishi, Y., Nayuki, T., Fujii, T., Takizawa, Y., Wang, X., Yamazaki, T., Nemoto, K., Kayoiji, T., Sekiya, T., Horioka, K., Okano, Y., Hironaka, Y., Nakamura, K.G., Kondo, K. & Andreev, A.A. (2005). Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target. Phys. Plasmas 12, 073102/1–5.CrossRefGoogle Scholar
Passoni, M., Bertagna, L. & Zani, A. (2010). Target normal sheath acceleration: theory, comparison with experiments and future perspectives. New J. Phys. 12, 045012/1–14.CrossRefGoogle Scholar
Pelka, A., Gregori, G., Gericke, D.O., Vorberger, J., Glenzer, S.H., Gunther, M.M., Harres, K., Heathcote, R., Kritcher, A.L., Kugland, N.L., Li, B., Makita, M., Mithen, J., Neely, D., Niemann, C., Otten, A., Riley, D., Schaumann, G., Schollmeier, M., Tauschwitz, An. & Roth, M. (2010). Ultrafast melting of carbon induced by intense proton beams. Phys. Rev. Lett. 105, 265701/1–4.CrossRefGoogle ScholarPubMed
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., Mccanny, T., Mora, P., Neely, D., Wahlstrom, C.G., Zepf, M. & Mckenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nat. Phys. 3, 5862.CrossRefGoogle Scholar
Romagnani, L., Borghesi, M., Cecchetti, C.A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T.V., Macchi, A., Mora, P., Neely, D., Notley, M., Osterholtz, J., Pipahl, C.A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P.A. & Willi, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241248.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Schreiber, J., Bell, F., Gruner, F., Schramm, U., Geissler, M., Schnurer, M., Ter-Avetisyan, S., Hegelich, B.M., Cobble, J., Brambrink, E., Fuchs, J., Audebert, P. & Habs, D. (2006). Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. Lett. 97, 045005/1–4.CrossRefGoogle ScholarPubMed
Sentoku, Y., Cowan, T.E., Kemp, A. & Ruhl, H. (2003). High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.CrossRefGoogle Scholar
Weichsel, J., Fuchs, T., Lefebvre, E., D'humieres, E. & Oelfke, U. (2008). Spectral features of laser-accelerated protons for radiotherapy applications. Phys. Med. Biol. 53, 43834397.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Ziener, C., Foster, P.S., Divall, E.J., Hooker, C.J., Hutchinson, M.H.R., Langley, A.J. & Neely, D. (2003). Specular reflectivity of plasma mirrors as a function of intensity, pulse duration, and angle of incidence. J. Appl. Physics 93, 768770.CrossRefGoogle Scholar