Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T02:23:13.433Z Has data issue: false hasContentIssue false

DD fusion from a polarized HD target

Published online by Cambridge University Press:  23 March 2015

J.-P. Didelez*
Affiliation:
IPN, CNRS/IN2P3 & Université Paris-Sud (UMR-CNRS 8608), ORSAY, France
C. Deutsch
Affiliation:
LPGP, Université Paris-Sud (UMR-CNRS 8578), ORSAY, France
*
Address correspondence and reprint requests to: J.-P. Didelez, IPN, CNRS/IN2P3 & Université Paris-Sud (UMR-CNRS 8608), Bât. 100, F-91406 ORSAY, France. E-mail: [email protected]

Abstract

Recently, we have proposed an experiment to test the persistence of the polarization in a fusion process (D+D→3He+n), using a powerful laser hitting a polarized HD target. The purpose of the present contribution is to examine in more detail the experimental constraints, to move from a principle proposal to a doable experiment. Some of the difficulties are as follows: Production of a windowless cryogenic HD target and target cryostat vacuum breakdown, identification of thermal fusion or accelerated deuterons, inducing nuclear reactions, and finally, a clear signature of the polarization persistence of the fused deuterons must be found. Those points will be reviewed and discussed in the scope of the new results presented at this conference.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bouchigny, S., Didelez, J.P. & Rouillé, G. (2005). Distillation and polarization of HD. In Proc. of the PST05 Workshop, Tokyo, Japan, World Scientific, Singapore, pp. 6771. (Uesaka, T., Sakai, H., Yoshimi, A. and Asahi, K., Eds.).Google Scholar
Bouchigny, S., Didelez, J.P., Dubois, F. & Rouillé, G. (2009). Distillation of HD gas and measurement of spin-lattice relaxation times. Nucl. Instrum. Methods A 607, 271278.CrossRefGoogle Scholar
Deltuva, A., Fonseca, A.C. & Sauer, P.U. (2008). Four-nucleon system with Δ-isobar excitation. Phys. Lett. B 660, 471477.CrossRefGoogle Scholar
Deltuva, A. & Fonseca, A.C. (2010). Polarization observables and spin-aligned fusion rates in 2H(d,p)3H and 2H(d,n)3He reactions. Phys. Rev. C 81, 054002 1–6.CrossRefGoogle Scholar
Didelez, J.P. (1994). A polarized HD target for nuclear physics experiments with real photons. Nucl. Phys. News 4, 1014.CrossRefGoogle Scholar
Didelez, J.P. & Deutsch, C. (2011). Persistence of the polarization in a fusion process. Laser Part. Beams 29, 169174.CrossRefGoogle Scholar
Fews, A.P., Norreys, P.A., Berg, F.N., Bell, A.R., Danson, C.N., Dangor, A.E., Lee, P. & Rose, S.J. (1994). Plasma ion emission from high intensity picoseconds laser pulse Interaction with solid targets. Phys. Rev. Lett. 73, 18011804.CrossRefGoogle ScholarPubMed
Floux, F., Cognard, D., Denoeud, L.G., Piar, G., Parisot, D., Bobin, J.L., Delobeau, F. & Fauquignon, C. (1970). Nuclear fusion reactions in solid-deuterium laser-produced plasma. Phys. Rev. A 1, 821824.CrossRefGoogle Scholar
Grigoryev, K., Chernov, N., Engels, R., Ivanov, I., Kiselev, S., Komarov, E., Kotchenda, L., Kravtsov, P., Kroell, L., Martyushov, A., Marusina, M., Mikirtychyats, M., Nikolaev, N., Rathmann, F., Paetz gen Schieck, H., Sherman, S., Ströher, H., Trofimov, V., Vasilyev, A. & Vznuzdaev, M. (2011). Double polarized dd-fusion experiment. J. Phys. Conf. Ser. 295, 012168. doi: 10.1088/1742-6596/1/012168.CrossRefGoogle Scholar
Khori, H. & LEPS Collaboration (2011). Spin physics at Spring-8 - Recent results. Proc. of the SPIN2010 Conf., Jülich, Germany. JPCS 1742-6596 295 012025 (doi: 10.1088/1742-6596/295/1/012025).CrossRefGoogle Scholar
Kulsrud, R.M., Furth, H.P., Valeo, E.J. & Goldhaber, M. (1982). Fusion reactor plasmas with polarized nuclei. Phys. Rev. Lett. 49, 12481251.CrossRefGoogle Scholar
More, R.M. (1983). Nuclear spin-polarized fuel for inertial fusion. Phys. Rev. Lett. 51, 396.CrossRefGoogle Scholar
Norreys, P.A., Fews, A.P., Berg, F.N., Bell, A.R., Dangor, A.E., Lee, R., Nelson, M.B., Schmidt, H., Tatarakis, M. & Cable, M.D. (1998). Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W. cm−2. Plasma Phys. Control. Fusion 40, 175182.CrossRefGoogle Scholar
Paetz gen. Schieck, H. (2010). The status of “polarized fusion”. Eur. Phys. J. A 44, 321354.CrossRefGoogle Scholar
Perego, C. (2013). Target normal sheath acceleration for laser-driven ion generation: advances in theoretical modeling. PhD Thesis, University of Milano-Bicocca.Google Scholar
Pretzler, G., Saemann, A., Pukhov, A., Schätz, T., Thirolf, P., Habs, D., Eidmann, K., Tsakiris, G.D., Meyer-ter-Vehn, J. & Witte, K.J. (1998). Neutron production by 200 mJ ultrashort laser pulses. Phys. Rev. E 58, 11651168.CrossRefGoogle Scholar
Sandorfi, A. (2013). Private communication.Google Scholar