Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T10:10:27.123Z Has data issue: false hasContentIssue false

A composite phase conjugator based on Brillouin-enhanced four-wave mixing combining with stimulated Brillouin amplification

Published online by Cambridge University Press:  08 December 2009

C.Y. Zhu
Affiliation:
Institute of Opto-electronics, Harbin Institute of Technology, Harbin, China
Z.W. Lu*
Affiliation:
Institute of Opto-electronics, Harbin Institute of Technology, Harbin, China
W.M. He
Affiliation:
Institute of Opto-electronics, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Zhi Wei Lu, Institute of Opto-Electronics, Harbin Institute of TechnologyP.O. Box 30031, Harbin 150080, China. E-mail: [email protected]

Abstract

A novel composite optical phase conjugator that combines Brillouin-enhanced four-wave mixing (BEFWM) and stimulated Brillouin amplification (SBA) in a compact structure is reported. A phase-conjugate wave seed is generated by BEFWM process with characteristics such as fast response, high conjugate fidelity and stability, then it is magnified by SBA with high energy-conversion efficiency. As a result, advantages of BEFWM and SBS can be realized at the same time. This composite conjugator has potentials for high-peak and high-average power laser applications, especially for short pulse or steep leading-edge pulse laser systems. Feasibility of this BEFWM-SBA mechanism is verified in theoretical simulations and demo experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, N.F., Bespalov, V.I. & Dvoretsky, M.A. (1989). Phase conjugation of single photons. IEEE J. Q.E. 25, 346350.CrossRefGoogle Scholar
Aschroeder, W., Damzen, M.J. & Hutchinson, M.H.R. (1989). Polarization-decoupled brillouin-enhanced four-wave mixing. IEEE J. Q. E. 25, 460469.CrossRefGoogle Scholar
Basov, N. & Zubarev, I. (1979). Powerful laser systems with phase conjugation by SMBS mirror. Appl. Phys. 20, 261264.CrossRefGoogle Scholar
Boyd, R.W., Rzazewski, K. & Narum, P. (1990). Noise initiation of stimulated Brillouin scattering. Phys. Rev. A. 42, 55145521.CrossRefGoogle ScholarPubMed
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1992). Pulse-shape dependence of stimulated-Brillouin-scattering phase-conjugation fidelity for high input energies. Opt. Lett. 17, 12711273.CrossRefGoogle ScholarPubMed
Hasi, W.L.J., Gong, S., Lu, Z.W., Lin, D.Y., He, W.M. & Fan, R.Q. (2008). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering using medium with short phonon lifetime. Laser Part. Beams 26, 511516.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., He, W.M. & Wang, S.Y. (2005). Study on Brillouin amplification in different liquid media. Acta Phys. Sin. (in Chinese) 54, 742748.CrossRefGoogle Scholar
Kappe, P., Strasser, A & Ostermeyer, M. (2007). Investigation of the impact of SBS-parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser Part. Beams 23, 107111.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors, Laser Part. Beams 27, 179184.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S. & Beak, D.H. (2008). Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021120.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S., Beak, D.H. & Lee, B.J. (2006). Long term stabilization of the beam combination laser with a phase controlled stimulated Brillouin scattering phase conjugation mirrors for the laser fusion driver. Laser Part. Beams 24, 519523.CrossRefGoogle Scholar
Lanzerotti, M.Y., Schirmer, R.W. & Gaeta, A.L. (1996). Phase conjugation of weak continuous-wave optical signals. Phys. Rev. Lett. 77, 22022205.CrossRefGoogle ScholarPubMed
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.CrossRefGoogle Scholar
Ostermeyer, M., Kong, H.J., et al. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.CrossRefGoogle Scholar
Scott, A.M. & Ridley, K.D. (1989). A review of Brillouin-enhanced four-wave mixing. IEEE J. Q.E. 25, 438459.CrossRefGoogle Scholar
Shahraam, A., Vladimyros, D. & Jesper, M. (1998). Nature of intensity and phase modulations in stimulated Brillouin scattering. Phys. Rev. A. 57, 39613971.Google Scholar
Wang, S.Y., Lu, Z.W., Lin, D.Y., Ding, L. & Jiang, D.B. (2007). Investigation of serial coherent laser beam combination based on Brillouin amplification. Laser Part. Beams 25, 7983.CrossRefGoogle Scholar
Wang, Y.L., Lu, Z.W., He, W.M., Zheng, Z.X. & Zhao, Y.H. (2009). A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies, Laser Part. Beams 27, 297302.CrossRefGoogle Scholar
Yang, A.L., Yang, J.G., Ding, L., Li, M.Z., Zhang, X.M. & Mang, Y.Z. (2001). Phase Jump in the Process of Stimulated Brillouin Scattering. Chinese J. Lasers. 28, 732734.Google Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength.CrossRefGoogle Scholar
Zel'dovich, B.Ya., Pilipetskii, N.F. & Shkunov, V.V. (1982). Phase conjugation in stimulated scattering. Sov. Phys. Usp. 25, 713737.CrossRefGoogle Scholar
Zel'dovich, B.Ya., Popovichev, V.I., Ragul'skii, V.V. & Faizyllov, F.S. (1972). Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam- Brillouin scattering. Soviet Phys. JETP lett. 15, 109.Google Scholar
Zhu, C.Y., Lu, Z.W., He, W.M., Ba, D.X., Wang, Y., Gao, W. & Dong, Y.K. (2007). Theoretical study on temporal behavior of Brillouin-enhanced four-wave mixing. Acta Phys. Sin. (in Chinese) 56, 229235.Google Scholar
Zhu, C.Y., Lu, Z.W., He, W.M., Guan, J. & Xu, X.C. (2008). Brillouin-enhanced four-wave mixing phase conjugation mirror with large signals. Chinese J. Lasers. (in Chinese) 35, 845848.Google Scholar