Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T02:54:21.527Z Has data issue: false hasContentIssue false

Collective stopping power in laser driven fusion plasmas for block ignition

Published online by Cambridge University Press:  23 December 2009

B. Malekynia*
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
H. Hora
Affiliation:
University of New South Wales, Sydney, Australia
N. Azizi
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
M. Kouhi
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
M. Ghoranneviss
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
G.H. Miley
Affiliation:
Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
X.T. He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
*
Address correspondence and reprint requests to: B. Malekynia, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected]

Abstract

In contrast to the usual laser fusion scheme with spherical irradiation and very high compression and ignition of fuel, the alternative scheme with side-on ignition of uncompressed solid density of fuel (Chu) may lead to a solution by using the now available picosecond laser pulses with higher than petawatt power. A necessary condition is to use clean laser pulses with better than 108 contrast ratio for suppression of relativistic self-focusing. When updating the analysis of Chu for fusion of deuterium-tritium and proton-11B, one problem is that the correct use of the stopping power of the alpha particles had to be solved. Discrepancies are evaluated in view of the stopping power at the low temperature range of the plasmas where the change of the emitted bremsstrahlung is involved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azizi, N., Hora, H., Miley, G.H., Malekynia, B., Ghoranneviss, M. & He, X.T. (2009). Threshold for laser driven block ignition for fusion energy. Laser Part. Beams 27, 201206.Google Scholar
Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies on laser-driven generation of fast high-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.Google Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E., Vankov., A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Bagge, E. & Hora, H. (1974). Calculation of the reduced penetration depth of relativistic electrons in plasmas for nuclear fusion. Atomkernenergie 24, 143146.Google Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. & Hora, H., eds.). Vol. 4B, pp. 465494. New York: Plenum Press.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.Google Scholar
Deutsch, C. (1986) Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 111.Google Scholar
Deutsch, C. & Popoff, R. (2007). Low-velocity ion stopping in a dense and low-temperature plasma target. Nuc. Instr. Meth. Phys. Res. A 577, 337342.CrossRefGoogle Scholar
Gabor, D. (1933). Elektrostatische theorie des plasmas. Zeitschrift f. Phys. 84, 474508.Google Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 7286.Google Scholar
Gericke, D.O. (2002). Stopping power for strong beam-plasma coupling. Laser Part. Beams 20, 471474.CrossRefGoogle Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold of laser fusion using nonlinear force driven block ignition. Laser Part. Beams 26, 105111.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy losses of heavy ions in a plasma target. Phys. Rev. A 42, 23132317.Google Scholar
Hoffmann, D.H.H., Bock, R., Faenov, A.Y., Funk, U., Geissel, M., Neuner, U., Pikuz, T.A., Rosmej, F., Roth, M., Suss, W., Tahir, N. & Tauschwitz, A. (2000). Plasma physics with intense laser and ion beams. Nuc. Instr. Meth. Phys. Res. B 161, 918.Google Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. New York: John Wiley.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M., Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion by nonlinear forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser-plamsa interaction. Czech. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2009). Laser Fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H. & Pfirsch, D. (1970). Laser energies necessary for inertial confinement nuclear fusion plasmas. Proceedings of the International Conference on Quantum Electronics, Kyoto, Japan.Google Scholar
Hora, H. & Pfirsch, D. (1972). Influence of fast ions losses in inertially confined nuclear fusion plasma. In Laser Interaction and Related Plasma Phenomena. (Schwarz, H.J. and Hora, H., Eds.). Volume 2, p. 515. New York: Plenum Press.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Zeitschrzftf. Naturforschung A 33, 890894.Google Scholar
Hora, H., Badziak, J., Read, M.N., Li, Y.-T., Liang, T.-J., Liu, H., Sheng, Z.-M., Zhang, J., Osman, F., Miley, G.H., Zhang, W., He, X., Peng, H., Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven particle beams of very high intensity. Phys. Plasmas 14, 072701/1–072701/7.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghiranneviss, M., Miley, G.H & He, X.T. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101.Google Scholar
Hora, H., Miley, G.H, Azizi, N., Malekynia, B., Ghoranneviss, M. & He, X.T. (2009 a). Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity. Laser Part. Beams 27, 491496.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghoranneviss, M., Malekynia, B. & Azizi, N. (2009 b). Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen-boron by nonlinear forced driven plasma blocks. Opt. Commun. 282, 41244126.Google Scholar
Kerns, J.R., Rogers, C.W. & Clark, J.G. (1972). Penetration of terawatt electron beam in polyethyens. Bull. Am. Phys. Soc. 17, 692.Google Scholar
Kidder, R.E. (1974). Isochoric compression of plasma for nuclear fusion. Nuci. Fusion 14, 797803.Google Scholar
Kirkpatrick, R.C. & Wheeler, , John, A. (1981). Volume ignition of laser compressed plasmas. Nucl. Fusion 21, 398403.Google Scholar
Malekynia, B., Hora, H., Ghoranneviss, M. & Miley, G.H. (2009). Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser Part. Beams 27, 233241.CrossRefGoogle Scholar
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns MJ laser pulses. Laser Part. Beams 23, 453460.Google Scholar
Nardi, E., Maron, Y. & Hoffmann, D. (2007). Plasma diagnostics by means of the scattering of electrons and proton beams. Laser Part. Beams 25, 489495.Google Scholar
Nardi, E., Maron, Y. & Hoffmann, D.H.H. (2009). Dynamic screening and charge state of fast ions in plasma and solids. Laser Part. Beams 27, 355361.Google Scholar
Nuckolls, J.H. & Wood, L. (2002). Future of Inertial Fusion Energy. Preprint UCRL-JC-149860. Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
Ray, P.S. & Hora, H. (1977). On the thermalization of energetic charged particles in fusion plasma with quantum electrodynamic considerations. Zeitschrift f. Naturforschung 31A, 538543.CrossRefGoogle Scholar
Ray, P.S. & Hora, H. (1976). On the range of alpha-particles in laser produced superdense fusion plasma. Nucl. Fusion 16, 535–536.CrossRefGoogle Scholar
Stepanek, J. (1981). Charged particle loss rates and ranges in plasma. In Laser Interaction and Related Plasma Phenomena (Schwarz, H., Hora, H., Lubin, M. & Yaakobi, B., eds.). Vol. 5, pp. 341351. New York: Plenum Press.Google Scholar
Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, I.W.Emmett, J.L., Hogan, W.J., Horst, Y.T., Krupke, W.F. & Lowdermilk, W.H. (1988). Progress in Laboratory High-gain ICF: Progress for the Future. LLNL Report 47312. Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong Lang, Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.CrossRefGoogle Scholar
Zhou, C.T., He, X.T. & Yu, M.Y. (2008). Laser-produced energetic transport in overdense plasmas by wire guiding. Appl. Phys. Lett. 92, 151502.Google Scholar