Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T14:00:33.511Z Has data issue: false hasContentIssue false

Coaxial propagation of Laguerre–Gaussian (LG) and Gaussian beams in a plasma

Published online by Cambridge University Press:  05 March 2015

Shikha Misra*
Affiliation:
Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi, India
Sanjay K. Mishra
Affiliation:
Institute for Plasma Research (IPR), Gandhinagar, India
P. Brijesh
Affiliation:
Tata Institute of Fundamental Research (TIFR), Mumbai, India UM-DAE-CBS, Mumbai, India
*
Address correspondence and reprint requests to: Shikha Misra, Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi, India 110016. E-mail: [email protected]

Abstract

This paper investigates the non-linear coaxial (or coupled mode) propagation of Laguerre–Gaussian (LG) (in particular L01 mode) and Gaussian electromagnetic (em) beams in a homogeneous plasma characterized by ponderomotive and relativistic non-linearities. The formulation is based on numerical solution of non-linear Schrödinger wave equation under Jeffreys–Wentzel–Kramers–Brillouin approximation, followed by paraxial approach applicable in the vicinity of intensity maximum of the beams. A set of coupled differential equations for spot size (beam width) and phase evolution with space corresponding to coupled mode has been derived and numerically solved to determine the propagation dynamics. Using focusing equation a critical condition describing the self-trapped (i.e., spatial soliton) mode of laser beam propagation in the plasma has been discussed; as a consequence oscillatory focusing/defocusing of the beams in coupled mode propagation have been analyzed and presented graphically. As an important outcome, significant enhancement in the intensity of LG beam is noticed when it is coupled with the Gaussian mode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Berge, L. (1998). Wave Collapse In Physics: Principles And Applications To Light And Plasma Waves. Phys. Rep. 303, 259370.CrossRefGoogle Scholar
Brijesh, P., Kessler, T., Zuegel, D. & Meyerhofer, D. (2007). Demonstration of a horseshoe-shaped longitudinal focal profile. J. Opt Soc. Am. B 24, 10301038.CrossRefGoogle Scholar
Deutsh, C., Furukaw, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction Physics of the Fast Ignitor Concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle Scholar
Eder, D.C., Amendt, P., Da Silva, L.B., London, R.A., Mac Gowan, B.J., Mathews, D.L., Penetrante, B.M., Rosen, M.D., Silks, S.C., Donnelly, T.D., Falcone, R.W & Strobel, G.L., (1994). Tabletop x-ray lasers. Phys. Plasmas 1, 17441752.CrossRefGoogle Scholar
Ghatak, A. & Loknathan, S. (2004). Quantum Mechanics: Theory and Applications. New Delhi: Springer Science and Business Media.CrossRefGoogle Scholar
Gupta, R., Rafat, M. & Sharma, R.P. (2011a). Effect of relativistic self- focusing on plasma wave excitation by a hollow Gaussian beam. J. Plasma Phys. 77, 777784.CrossRefGoogle Scholar
Gupta, R., Sharma, P., Rafat, M. & Sharma, R.P. (2011b). Cross-focusing of two hollow Gaussian laser beams in plasmas. Laser Part. Beams 29, 227230.CrossRefGoogle Scholar
Gurevich, A.V. (1978). Nonlinear Phenomena in the Ionosphere. Berlin: Springer.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Kasparian, J., Ackermann, R., Andre, Y. B., Mechain, G., Mejean, G., Prade, B., Rohwetter, P., Salmon, E., Stelmaszczkyk, K., YU, J., Mysyrowicz, A., Sauerbrey, R.Woste, L. & Wolf, J., (2008). Electric events synchronized with laser filaments in thunderclouds. Opt. Express 16, 57575763.CrossRefGoogle ScholarPubMed
Khamedi, M. & Bahrampour, A.R. (2013). Analysis of twisted laser beam focusing and defocusing in plasma, Phys. Scr. 88, 035503035506.CrossRefGoogle Scholar
Konar, S. & Jana, S. (2005). Nonlinear Propagation of a Mixture of TEM00 and TEM01 Modes of a Laser Beam in a Cubic Quintic Medium, Phys. Scr. 71, 198203.CrossRefGoogle Scholar
Luo, Q., Xu, H.L., Hosseini, S.A., Daigle, J.F., Theberge, F., Sharifi, M. & Chin, S.L., (2006). Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy. Appl. Phys. B 82, 105109.CrossRefGoogle Scholar
Misra, S. & Mishra, S.K. (2008). On focusing of a ring ripple on a Gaussian electromagnetic beam in a plasma. Phys. Plasmas 15, 0923071–8.CrossRefGoogle Scholar
Misra, S. & Mishra, S.K. (2009a). Focusing of a ring ripple on a Gaussian electromagnetic beam in a magnetoplasma. J. Plasma Phys. 75, 545561.CrossRefGoogle Scholar
Misra, S. & Mishra, S.K. (2009b). Focusing of dark hollow Gaussian electromagnetic beam in a plasma with relativistic ponderomotive Regime. PIER B 16, 291309.CrossRefGoogle Scholar
Misra, S., Mishra, S.K., Sodha, M.S. & Tripathi, V.K. (2014). Effect of Electron-Ion Recombination on Self-focusing/ defocusing of Laser Pulse in Tunnel Ionized Plasmas. Laser Part. Beams 32, 2131.CrossRefGoogle Scholar
Nasalski, W. (1995). Complex ray tracing of nonlinear propagation. Opt. Commun. 119, 218226.CrossRefGoogle Scholar
Nasalski, W. (1996). Aberrationless effects of nonlinear propagation. J. Opt. Soc. Am. B 13, 17361747.CrossRefGoogle Scholar
O'neil, A.T., Macvicar, I., Allen, L. & Padgett, M.J. (2002). Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 0536011–4.CrossRefGoogle ScholarPubMed
Ren, Y., Alshershby, M., Qin, J., Hao, Z. & Lin, J. (2013). Microwave guiding in air along single femtosecond laser filament. J. Appl. Phys. 113, 094904-1-5.CrossRefGoogle Scholar
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Scheller, M., Mills, M.S., Miri, M.A., Cheng, W., Moloney, J.V., Kolesik, M., Polynkin, P. & Christodoulides, D.N., (2014). Externally refueled optical filaments. Nat. Photonics 8, 297301.CrossRefGoogle Scholar
Sharma, A., Borhanian, J. & Kourakis, I. (2009). Electromagnetic beam profile dynamics in collisional plasmas. J. Phys. A: Math. Theor. 42, 465501.CrossRefGoogle Scholar
Sharma, A., Prakash, G., Verma, M.P. & Sodha, M.S. (2003). Three regimes of intense laser propagation in plasmas, Phys. Plasmas 10, 40794084.CrossRefGoogle Scholar
Sharma, A., Sodha, M.S., Misra, S. & Mishra, S.K. (2013). Thermal de-focusing of intense dark hollow Gaussian laser beams in atmosphere. Laser Part. Beams 31, 403410.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectrics, Semiconductors and Plasmas. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Govind, & Sharma, R.P. (1979). Cross-focusing of two co-axial Gaussian electromagnetic beams in a magnetoplasma and plasma wave generation. Plasma Phys. 21, 1326.Google Scholar
Sodha, M.S., Mishra, S.K.& Misra, S. (2009a). Focusing of dark hollow Gaussian beams in a plasma. Laser Part. Beams 27, 5768.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009b). Focusing of dark hollow Gaussian electromagnetic beam in a magnetoplasma. J. Plasma Phys. 75, 731748.CrossRefGoogle Scholar
Sodha, M.S., Sharma, A. & Agarwal, S. (2008). A condition for simultaneous propagation of coaxial Gaussian electromagnetic beams in a plasma, without convergence or divergence. J. Plasma Phys. 74, 293299.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas in plasmas and semiconductors. Prog. Opt. 13, 169265.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1991). Stimulated back scattered harmonic generation from intense laser interaction with beams and plasmas. Phys. Rev. Lett. 67, 20212024.CrossRefGoogle Scholar
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wake-field acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.CrossRefGoogle Scholar
Stibenz, G., Zhavoronkov, N. & Steinmeyer, G. (2006). Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31, 274276.CrossRefGoogle Scholar
Sueda, K., Miyaji, G., Miyanaga, N. & Nakatsuka, M. (2004). Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express 12, 35483553.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinisky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Thakur, A. & Berakdar, J. (2010). Self-focusing and defocusing of twisted light in non-linear media. Opt. Express 18, 2769127696.Google ScholarPubMed
Umstadter, D., Chen, S.Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons. Science 273, 472475.CrossRefGoogle ScholarPubMed
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar