Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T04:48:41.614Z Has data issue: false hasContentIssue false

Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch

Published online by Cambridge University Press:  01 October 2004

V. A. BALAKIREV
Affiliation:
National Scientific Center, Kharkov Institute of Physics & Technology, Kharkov, Ukraine
I. V. KARAS‘
Affiliation:
National Scientific Center, Kharkov Institute of Physics & Technology, Kharkov, Ukraine
V. I. KARAS‘
Affiliation:
National Scientific Center, Kharkov Institute of Physics & Technology, Kharkov, Ukraine
V. D. LEVCHENKO
Affiliation:
Keldysh Institute of Applied Mathematics of RAS, Moscow, Russia
M. BORNATICI
Affiliation:
INFM, Dipartimento di Fisica “A. Volta,” Università degli Studi di Pavia, Pavia, Italy

Abstract

The results from theoretical and experimental studies, as well as from 2.5-dimensional (2.5-D) numerical simulation of plasma wake field excitation, by either relativistic electron bunch, laser pulse, and the charged particle wake field acceleration are discussed. The results of these investigations make it possible to evaluate the potentialities of the wake field acceleration method and to analyze whether it can serve as a basis for creating a new generation of devices capable of charged particle accelerating at substantially higher (on the order of two to three magnitudes) rates in comparison with those achievable in classical linear high-frequency (resonant) accelerators.

Type
INTERNATIONAL WORKSHOP ON LASER AND PLASMA ACCELERATORS
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was delivered at the International Workshop on Laser and Plasma Accelerators, held at Portovenere, Italy, September 29 to October 3, 2003.

References

REFERENCES

Akhiezer, A.I. & Polovin, R.V. (1956). On the theory of wave motion of electron plasmas. Sov. Phys. J. Exp. Theor. Phys. 30, 696709.Google Scholar
Amatuni, A.T.S., Magomedov, M.R., Sekhposyan, E.V. & Elbakyan, S.S. (1986). A strong longitu-dinal wave excitation in plasmas by electron bunches. Sov. Plasma Physics 12, 11451147.Google Scholar
Amiranoff, F., Moulin, F., Fusellier, J., Joly, J.M., Juillard, M., Bercher, M., Bernard, D., Debraine, A., Dieulot, J.M., Jacquet, F., Matricon, P., Mine, P.h., Montes, B., Morano, R., Poilleux, P., Speck,a A., Morillo, J., Ardoncea,u. J., Cros, B., Matthieussent, G., Stenz, C. & Mora, P. (1995). Experimental study of electron acceleration by plasma beat-waves with Nd Lasers. Phys. Rev. Lett. 74, 52205223.Google Scholar
Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Pogosova, A.A. & Ramazashvili, R.R. (1992). Resonantly excitation of wake-field waves by laser pulse in plasmas. JETP Lett. 55, 551554.Google Scholar
Andreev, N.E., Kirsanov, V.I. & Sakharov, A.S. (2000). Radial structure of the wake-field excited during the self-modulation of a laser pulse in plasma. Plasma Phys. Rep. 26, 388396.Google Scholar
Antonsen, T.M. & Mora, P. (1992). Self-focusing and raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 22042207.Google Scholar
Assmann, R., Chen, P., Decker, F., Iverson R., et al. (1999). Progress toward E-157: A 1GeV plasma wake-field accelerator. Proceedings of the 1999 Particle Accelerator Conference 1, 330332.Google Scholar
Balakirev, V.A., Karas‘, V.I., Fainberg, Ya.B., Sotnikov, G.V., Karas‘, I.V., Levchenko, V.D. & Sigov Yu.S. (1998). 2.5-Dimensional numerical simulation of relativistic electron bunch self-modulation in plasma. Proc. of the 12th International Conference on High-Power Particle Beams BEAMS '98 2, 392395.
Balakirev, V.A., Karas‘, V.I., Karas‘, I.V. & Levchenko, V.D. (2001). Plasma wake-field excitation by relativistic electron bunches and charged particle acceleration in the presence of external magnetic field. Laser and Particle Beams 19, 597604.Google Scholar
Balakirev, V.A., Karas‘, V.I. & Karas‘, I.V. (2002). Charged particle acceleration by an intense ultra-short electromagnetic pulse excited in a plasma by laser radiation or by relativistic electron bunches. Plasma Phys. Rep. 28, 125140.Google Scholar
Batishchev, O.V., Karas‘, V.I., Levchenko, V.D. & Sigov, Yu.S. (1994). Kinetic simulation of open beam-plasma systems. Plasma Phys. Rep. 20, 587595.Google Scholar
Baton, S.D., Santos, J.J., Amiranoff, F., Popescu, H., Gremillet, L., Koenig, M., Martinolli, E., Guilbaud, O., Rousseaux, C., Gloahec, L.R., Hall, T., Batani, D., Perelli, E., Scianitti F., &Cowan T.E. (2003). Evidence of ultrashort electron bunches in laser-plasma interactions at relativistic intensities. Phys. Rev. Lett. 91, 105001-1105001-4.Google Scholar
Blue, B.E., Clayton, C.E., O'Connell, C.L., Decker, F.-J., Hogan, M.J., Huang, C., Iverson, R., Joshi, C., Katsouleas, T.C., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., Siemann, R.H. & Walz, D. (2003). Plasma-wake-field acceleration of an intense positron beam. Phys. Rev. Lett. 90, 214801-1214801-4.Google Scholar
Borghesi, M., Mackinnon, A.J., Gaillard, R., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1998a). Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in preionized plasma. Phys. Rev. Lett. 80, 51375140.Google Scholar
Borghesi, M., Mackinnon, A.J., Bell, A.R., Gailard, R. & Willi O. (1998b). Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultra intense picosecond laser pulse. Phys. Rev. Lett. 81, 112115.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S. (2002). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Physics of Plasmas 9, 22142220Google Scholar
Budker, G.I. (1956). Relativistic stabilized electron beam. Proceedings of the CERN Symposium on High Energy Accelerators and Pion Physics 1, 6873.Google Scholar
Bulanov, S.V., Esirkepov, T.J., Naumova, N.M., Pegoraro, F., Pogorelsky, I.V. & Pukhov A.M. (1996). Controlled wake field acceleration via laser pulse shaping. IEEE Transactions on Plasma Science 24, 393399.Google Scholar
Bulanov, S.V., Kovrizhnykh, L.M. & Sakharov, A.S. (1990). Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with plasma Phys. Rep. 186, 151.Google Scholar
Bychenkov, V.Yu., Demin, V.I. & Tikhonchuk, V.T. (1994). Pion production under the action of intense ultrashort laser pulse on a solid target. Sov. Phys. JETP 78, 6273.Google Scholar
Chen, P., Dawson, J.M., Huff, R.W. & Katsouleas, T. (1985). Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693696.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machcek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids Phys. Rev. Lett. 84, 670673.Google Scholar
Clayton, C.E., Marsh, K.A., Dyson, A., Everett, M., Lal, A., Leemans, W.P., Williams, R. & Joshi, C. (1993a). Experiments of the beat-wave-acceleration. Phys. Rev. Lett. 70, 3740.Google Scholar
Clayton, C.E., Marsh, K.A., Everett, M., Lal, A. & Joshi, C. (1993b). Demonstration of Plasma Beat-Wave Acceleration of Electron from 2 MeV to 20 MeV. Proceedings of the 1993 Particle Accelerator Conference. IEEE 4, 25512553.Google Scholar
Dalla, S. & Lontano, M. (1994). Large amplitude plasma wave excitation by means of sequences of short laser pulses. Phys. Rev. E. 49, R1819R1822.Google Scholar
Davies, J.R., Bell, A.R., Haines, M.G. & Guerin S.M. (1997). Short-pulse high-intensity laser-generated fast electron transport into thick solid targets. Phys Rev E. 56, 71937203.Google Scholar
Dawson, J.M. (1999). Role of computer modeling of plasmas in the 21st century. Physics of Plasmas 6, 44364443.Google Scholar
Ebrahim, N.A. (1994). Laser beat-wave acceleration of electrons. J. Appl. Phys. 76, 76457649.Google Scholar
Esarey, E., Krall, J. & Sprangle, P. (1993). Envelope analysis of intense laser pulse self-modulation in plasmas. Phys. Rev. E 48, 21572163.Google Scholar
Fainberg, Ya.B. (1956). The use of plasma waveguides as accelerating structures in linear accelerators. Proc. CERN Symp of High Energy Accelerators and Pion Physics 1, 8487.Google Scholar
Fainberg, Y.B. (2000). Plasma electronics and plasma acceleration of charged particles. Plasma Phys. Rep. 26, 335343.Google Scholar
Faure, J., Malka, V., Marques, J.-R., Amiranoff, F., Courtois, C., Najmudin, Z., Krushelnick, K., Salvati, M., Dangor, A.E., Solodov, A., Mora, P., Adam, J.-C. & Heron A. (2000). Interaction of an ultra - intense laser pulse with a nonuniform preformed plasma. Physics of Plasmas 7, 30093016.Google Scholar
Gorbunov, L.M. & Kirsanov, V.I. (1987). Plasma wave excitation by electromagnetic radiation burst. JETP 93, 5356.Google Scholar
Gorbunov, L.M., Mora, P. & Antonsen, T.M. Jr. (1996). Magnetic field of a plasma wake driven by a laser pulse. Phys. Rev. Lett. 76, 24952498.Google Scholar
Haines, M.G. (1997). Saturation mechanisms for the generated magnetic field in nonuniform laser-matter irradiation. Phys. Rev. Lett. 78, 254.Google Scholar
Hogan, M.J., Clayton, C.E., Huang, C., Muggli, P., Wang, S., Blue, B.E., Walz, D., Marsh, K.A., O'Connel, C.L., Lee, S., Iverson, R., Decker, F.-J., Raimond, P., Mori, W.B., Katsouleas, T.C., Joshi, C. & Siemann, R.H. (2003). Ultrarelativistic-positron-beam transport through meter-scale plasmas. Phys. Rev. Lett. 78, 205002-1205002-4.Google Scholar
Horovitz, Y., Eliezer, S., Ludmirsky, A., Henis, Z., Moshe, E., Shpitalnik, R. & Arad, B. (1997). Measurements of inverse faraday effect and absorption of circularly polarized laser light in plasmas. Phys. Rev. Lett. 78, 710.Google Scholar
Karas‘, V.I., Balakirev, V.A., Fainberg, Ya.B., Karas‘, I.V., Kornilov, E.A., Levchenko, V.D., Sigov, Yu.S. & Sotnikov, G.V. (2000). Nonlinear phenomena and self-organization structures in plasmas. J. Technical Physics 41, 293305.Google Scholar
Karas‘, V.I., Batishchev, O.V. & Bornatici, M. (2003). On the mechanisms of strong magnetic field excitation at the interaction of ultra intense short laser pulse with an plasma target. Problems of Atomic Science and Technology 4, 143147.Google Scholar
Karas‘, V.I., Karas‘, I.V., Levchenko, V.D., Sigov, Yu.S. & Fainberg, Ya.V. (1997). 2.5-Dimensional numerical modeling of the formation of a plasma channel due to ion redistribution during the propagation of a finite sequence of relativistic electron bunches through high-density and low-density plasmas. Plasma Phys. Rep. 23, 285389.Google Scholar
Katsouleas, T. (1986). Physical mechanisms in the plasma wake-field accelerator. Phys. Rev. A 33, 20562064.Google Scholar
Keinigs, R. & Jones, M.E. (1987). Two-dimensional dynamics of the plasma wake-field accelerator. Phys. Fluids 30, 252263.Google Scholar
Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H. & Nakai S. (2003a). Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 4851.Google Scholar
Kitagawa, Y., Sentoku, Y., Akamatsu, S., Sakamoto, W., Fujita, H., Tanaka, K. A., Kodama, R., Norimatsu, T., Nakai, M. & Yoshida, H. (2003b). Electron acceleration above 100 MeV in capillary. Proceedings of ICFA Workshop on Laser and Plasma Accelerators.
Kostyukov, I.Yu., Shvets, G., Fisch, N.J. & Rax, J.M. (2002). Magnetic-field generation and electron acceleration in relativistic laser channel. Phys. Plasmas 9, 636648.Google Scholar
Krall, J., Ting, A., Esarey, E. & Sprangle P. (1993). Enchanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48, 21572163.Google Scholar
Le Blanc, S.P., Downer, M.C., Wagner, R., Chen, S.-Y., Maksimchuk, A., Mourou, G. & Umstadter, D. (1996). Temporal characterization of a self-modulated laser wake-field. Phys. Rev. Lett. 77, 53815384.Google Scholar
Lee, S., Katsouleas, T.C., Hemker, R. & Mori, W.B. (2000). Simulations of a meter-long plasma wake-field accelerator. Phys. Rev. E 61, 70147018.Google Scholar
Litvak, A.G. (1964). On nonlinear excitation of plasma waves. Izvestiya Vuzov. Radiofizika 7, 562563.Google Scholar
McKenna, P., Ledingham, K.W.D., McCanny, T., Singhal, R.P., Spencer, I., Santala, M.I.K., Beg, F.N., Krushelnick, K., Tatarakis, M., Wei, M.S., Clark, E.L., Clarke, R.J., Lancaster, K.L., Norreys, P. A., Spohr, K., Chapman, R. & Zepf M. (2003). Demonstration of fusion-evaporation and direct-interaction nuclear reactions using high-intensity laser-plasma-accelerated ion beams. Phys. Rev. Lett. 91, 075006-1075006-4.Google Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh F.N. (1995). Electron acceleration in plasmas by laser pulse. Nature (London) 337, 806807.Google Scholar
Najmudin, Z., Tatarakis, M., Pukhov, A., Clark, E.L., Clarke, R.J., Dangor, A.E., Faure, J., Malka, V., Nee-ly, D., Santala, M.I.K. & Krushelnick, K. (2001). Measurements of the inverse faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett. 87, 215004-1215004-4.Google Scholar
Nakajima, K., Kawakubo, T., Nakanishi, H., Ogata, A., et al. (1994). Proof-of principle experiment of laser wake-field acceleration using a 1 ps 10 TW Nd: glass laser. Phys. Rev. Lett. 74, 44284431.Google Scholar
Rosenbluth, M.N. & Liu, C.S. (1972). Excitation of plasma wave by two laser beams. Phys. Rev. Lett. 29, 701704.Google Scholar
Rosenzweig, J., Cline, D., Cole, B., et al. (1988). Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61, 98101.Google Scholar
Rosenzweig, J.B. (1990). Nonlinear PLASMA AND BEAM PHYSICS. FERMILAB Conf.90/40, FNAL 36.
Rosenzweig, J.B., Breizman, B.N., Katsouleas, T. & Su, J.J. (1991). Acceleration and focusing of electrons in two dimensional nonlinear plasma wake-fields. Phys. Rev. A 44, R6189R6195.Google Scholar
Schoessow, P., Chojnacki, E., Gai, W., Ho, C., Konecny, R., Power, J., Rosing, M. & Simpson, J. (1993). The aragonne wake-field accelerator-overview and status. IEEE 4, 25962598.Google Scholar
Sprangle, P., Hafizi, B., Penano, J.R., et al. (2000). Stable laser pulse propagation in plasma channels for gev electron acceleration. Phys. Rev. Lett. 85, 51105113 (and references therein).Google Scholar
Sprangle, P., Penano, J.R., Hafizi, B., Hubbard, R.F., Ting, A., Gordon, D.F., Zigler, A. & Antonsen, T.M. Jr. (2002). GeV acceleration in tapered plasma channels. Physics of Plasmas 9, 23642370.Google Scholar
Steiger, A.D. & Woods, C.H. (1972). Intensity-dependent propagation characteristics of circularly polarized high-power laser radiation in a dense electron plasma. Phys. Rev. A 5, 14671474.Google Scholar
Sudan, R.N. (1993). Mechanism for generation of 109 g magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 20, 30753078.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Beat-wave acceleration. Phys. Rev. Lett. 43, 267270.Google Scholar
Ting, A., Moore, C.I., Krushelnik, K., Burris, H.R., Manka, C., Fischer, R., et al. (1998). Channeling and time evolution of laser wakes and electron acceleration in a self-modulated laser wake-field accelerator experiment. IEEE Trans. on Plasma Science 26, 611615.Google Scholar
Tripathi, V.K. & Liu, C.S. (1994). Self-generated magnetic field in an amplitude modulated laser filament in a plasma. Phys. Plasmas 1, 990992.Google Scholar
Umstadter, D., Esarey, E. & Kim, J. (1994). Nonlinear plasma waves resonantly driven by optimized laser pulse trains. Phys. Rev. Lett. 72, 12241227.Google Scholar
Umstadter, D., Kim, J.K. & Dodd, E. (1996a). Laser injection of ultrashort electron pulses into wake-field plasma waves. Phys. Rev. Lett. 76, 20732076.Google Scholar
Umstadter, D., Chen, S.-Y, Maksimchuk, A., Mourou, G. & Wagner, R. (1996b). Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons. Science 273, 472475.Google Scholar
Veksler, V.I. (1956). Coherent principle of acceleration of charged particle. Proceedings of the CERN Symposium on High Energy Accelerators and Pion Physics 1, 8083.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pul-ses. Phys. Rev. Lett. 69, 13831386.Google Scholar
Yakimenko, V., Pogorelsky, I.V., Pavlishin, I.V., Ben-Zvi, I., Kushe, K., Eidelman, Yu., Hirose, T., Kumita, T., Kamiya, Y., Urakawa, J., Greenberg, B. & Zigler, A. (2003). Cohesive acceleration and focusing of relativistic electrons in overdense plasma. Phys. Rev. Lett. 91, 014802-1014802-4.Google Scholar